Advertisement

Aquaculture International

, Volume 20, Issue 3, pp 585–599 | Cite as

Influence of food deprivation and high stocking density on energetic metabolism and stress response in red porgy, Pagrus pagrus L

  • Raúl Laiz-Carrión
  • Inês Rosa Viana
  • Juana Rosa Cejas
  • Ignacio Ruiz-Jarabo
  • Salvador Jerez
  • Juan Antonio Martos
  • Almansa Berro Eduardo
  • Juan Miguel Mancera
Article

Abstract

In the present study, the influence of high stocking density and food deprivation on red porgy (Pagrus pagrus L.) energy metabolism was investigated after 14 and 21 days assessing plasmatic, hepatic, and muscular parameters. Specimens were submitted to four different experimental conditions: (1) fed fish under low stocking density (4 kg m−3, LSD-F); (2) food-deprived fish under low stocking density (LSD-FD); (3) fed fish under high stocking density (50 kg m−3, HSD-F); and (4) food-deprived fish under high stocking density (HSD-FD). At plasmatic level, cortisol concentration enhanced in fish maintained under HSD condition, with higher effect in fed fish, whereas FD condition decreased values of lactate, protein, and triglycerides. In liver, significant increases in triglyceride levels, together with a decrease in glycogen values, were observed in FD specimens. Furthermore, a weak effect of density in fed fish was observed, with decreasing hepatic glycogen. In white muscle, aminoacid and triglyceride values diminished in FD group, while increased in specimens submitted to HSD condition. Our results suggested an enhancement in P. pagrus gluconeogenic and glycogenolytic potential when submitted to HSD and FD conditions to cope reallocation of metabolic energy due to these different stress situations.

Keywords

Stress Food deprivation High stocking density Metabolism Pagrus pagrus Red porgy 

Abbreviations

LSD-F

Fed fish under low stocking density (4 kg m−3)

LSD-FD

Food-deprived fish under low stocking density (4 kg m−3)

HSD-F

Fed fish under high stocking density (50 kg m−3)

HSD-FD

Food-deprived fish under high stocking density (50 kg m−3)

CF

Fulton’s condition factor.

HSI

Hepatosomatic index

FSI

Fatsomatic index

SEM

Standard error of the mean

ELISA

Enzyme-linked immunosorbent assay

BCA

Bicinchoninic acid

Notes

Acknowledgments

This work was supported by grant PTR1995-0933-OP-02-02 from Ministerio de Ciencia y Tecnología (Spain) and PETRIPARGO from the Spanish Institute of Oceanography (IEO, Spain). The authors wish to thank technicians from the culture facilities of the Canary Oceanographic Center (Tenerife) for their help with fish maintenance and sampling.

References

  1. Albalat A, Gómez-Requeni P, Rojas P, Médale F, Kaushik S, Vianen GJ, Van denThillart G, Gutiérrez J, Pérez-Sánchez J, Navarro I (2005) Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes. Am J Physiol Reg I 289:R259–R265CrossRefGoogle Scholar
  2. Aragao C, Corte-Real J, Costas B, Dinis MT, Conçeicao LEC (2008) Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis, Kaup 1858). Amino Acids 34:143–148PubMedCrossRefGoogle Scholar
  3. Arjona FJ, Vargas-Chacoff L, Ruiz-Jarabo I, Gonçalves O, Páscoa I, Martín del Río MP, Mancera JM (2009) Tertiary stress responses in Senegalese sole (Solea senegalensis, Kaup 1858) to osmotic challenge: Implications for osmoregulation, energy metabolism and growth. Aquaculture 287:419–426CrossRefGoogle Scholar
  4. Barry TP, Lapp AF, Kayest B, Malison JA (1993) Validation of a microtitre plate ELISA for measuring cortisol in fish and comparison of stress responses of rainbow trout (Oncorhynchus mykiss) and lake trout (Salvelinus namaycush). Aquaculture 117:351–363CrossRefGoogle Scholar
  5. Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integ Comp Biol 42(3):517–525CrossRefGoogle Scholar
  6. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26CrossRefGoogle Scholar
  7. Bastrop R, Spangenberg R, Jürss K (1991) Biochemical adaptation of juvenile carp (Cyprinus carpio L.) to food deprivation. Comp Biochem Physiol 98A(1):143–149CrossRefGoogle Scholar
  8. Caruso G, Maricchiolo G, Micale V, Genovese L, Caruso R, Denaro MG (2010) Physiological responses to starvation in the European eel (Anguilla anguilla): effects on haematological, biochemical, non-specific immune parameters and skin structures. Fish Physiol Biochem 36(1):71–83PubMedCrossRefGoogle Scholar
  9. Caruso G, Denaro MG, Caruso R, Mancari F, Genovese L, Maricchiolo G (2011) Monitoring of haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax, Linnaeus 1758) and blackspot sea bream (Pagellus bogaraveo, Brunnich, 1768) during starvation. Mar Environ Res 72:46–52PubMedCrossRefGoogle Scholar
  10. Cejas JR, Forés R, Samper M, Villamandos JE, Jerez S (1999) Resultados preliminares de engorde del bocinegro (P. pagrus). In: Actas del VII Congreso Nacional de Acuicultura (ed. by Viceconsejería de Agricultura y Pesca, Gobierno de Canarias). Las Palmas de Gran Canaria Spain. pp. 83Google Scholar
  11. Cejas J, Almansa E, Tejera N, Jerez S, Bolaños A, Lorenzo A (2003) Effect of dietary supplementation with shrimp on skin pigmentation and lipid composition of red porgy (Pagrus pagrus) alevins. Aquaculture 218:457–469CrossRefGoogle Scholar
  12. Costas B, Aragao C, Mancera JM, Dinis MT, Conceicao LEC (2008) High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles. Aquacult Res 39(1):1–9CrossRefGoogle Scholar
  13. Ellis T, North B, Scott AP, Bromage NR, Porter M, Gadd D (2002) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol 61:493–531CrossRefGoogle Scholar
  14. Fanouraki E, Divanach P, Pavlidis M (2007) Baseline values for acute and chronic stress indicators in sexually immature red porgy (Pagrus pagrus). Aquaculture 265:294–304CrossRefGoogle Scholar
  15. Herrera M, Vargas-Chacoff L, Hachero I, Ruiz-Jarabo I, Rodiles A, Navas JI, Mancera JM (2009) Physiological responses of juvenile wedge sole Dicologoglossa cuneata (Moreau) to high stocking density. Aquacult Res 40(7):790–797CrossRefGoogle Scholar
  16. Kentouri M, Pavlidis M, Papandroulakis N, Divanach P (1995) Culture of red porgy, Pagrus pagrus, in Crete. Present knowledge, problems and perspectives. Proceedings of the seminar of the CIHEAM network on technology of aquaculture in the Mediterranean (TECAM) 16:65–78Google Scholar
  17. Keppler D, Decker K (1974) Glycogen determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 127–131Google Scholar
  18. Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, Martín del Río MP, Miguez JM, Soengas JL, Mancera JM (2002) Energy metabolism in fish tissues related to osmoregulation and cortisol action. Fish Physiol Biochem 27:179–188CrossRefGoogle Scholar
  19. Laiz-Carrión R, Fuentes J, Redruello B, Guzmán JM, Martín del Río MP, Power DM, Mancera JM (2009) Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus. Gen Gen Comp Endo 162(3):293–300CrossRefGoogle Scholar
  20. Machado CR, Garofalo MAR, Roselino JES, Kettelhut IC, Migliorini RH (1988) Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet. Gen Comp Endo 71(3):429–437CrossRefGoogle Scholar
  21. Mancera JM, Vargas-Chacoff L, García-López A, Kleszczyńska A, Kalamarz H, Martínez-Rodríguez G, Kulczykowska E (2008) High density and food deprivation affect arginine vasotocin, isotocin and melatonin in gilthead sea bream (Sparus auratus). Comp Comp Biochem Physiol 149A(1):92–97CrossRefGoogle Scholar
  22. Maragoudaki D, Paspatis M, Kentouri M (1999) Influence of stocking density on growth of juvenile red porgy Pagrus pagrus L under different feeding conditions. Aquacult Res 30:501–508CrossRefGoogle Scholar
  23. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15PubMedCrossRefGoogle Scholar
  24. Méndez G, Wieser W (1993) Metabolic responses to food deprivation and refeeding in juveniles of Rutilus rutilus (Teleostei: Cyprinidae). Environ Biol Fish 36(1):73–81CrossRefGoogle Scholar
  25. Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Revi Rev Fish Biol Fish 9:211–268CrossRefGoogle Scholar
  26. Montero D, Izquierdo MS, Tort L, Robaina L, Vergara JM (1999) High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol Biochem 20:53–60CrossRefGoogle Scholar
  27. Moore S (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the nynhidrin reaction. J Biol Chem 1242:6281–6283Google Scholar
  28. Mylonas CC, Papadaki M, Divanach P (2003) Seasonal changes in sperm production and quality in the red porgy Pagrus pagrus (L.). Aquacult Res 34(13):1161–1170CrossRefGoogle Scholar
  29. Navarro I, Gutiérrez J (1995) Fasting and starvation. In: Hochachka PW, Mommsen TP (eds) Metabolic biochemistry, biochemistry and molecular biology of fishes, vol 4. Elsevier, Amsterdam, pp 392–434Google Scholar
  30. Papandroulakis N, Kentouri M, Divanach P (2004) Biological performance of red porgy (Pagrus pagrus) larvae under intensive rearing conditions with the use of an automated feeding system. Aquacult Int 12(2):191–203CrossRefGoogle Scholar
  31. Pavlidis M, Kokokiris L, Papandroulakis N, Divanach P, Fostier A, Kentouri M (2000) Intensive culture of red porgy, in the Mediterranean: biological background and technological status. In: Workshop on New Species for Aquaculture, pp. 37–39. Aquaculture Research Group, Center of Marine Sciences (CCMAR). University of Algarve, Faro, PortugalGoogle Scholar
  32. Pickering AD (1993) Growth and stress in fish production. Aquaculture 111:51–63CrossRefGoogle Scholar
  33. Polakof S, Arjona FJ, Sangiao-Alvarellos S, Martín del Rio MPM, Mancera JM, Soengas JL (2006) Food deprivation alters osmoregulatory and metabolic responses to salinity acclimation in gilthead sea bream Sparus auratus. J Com Physiol 176B:441–452Google Scholar
  34. Rodríguez L, Begtashi I, Zanuy S, Carrillo M (2000) Development and validation of an enzyme immunoassay for testosterone: Effects of photoperiod on plasma testosterone levels and gonadal development in male sea bass (Dicentrarchus labrax L.) at puberty. Fish Physiol Biochem 23:141–150CrossRefGoogle Scholar
  35. Roo FJ, Hernández-Cruz CM, Socorro JA, Fernández-Palacios H, Izquierdo MS (2010) Advances in rearing techniques of Pagrus pagrus (Linnaeus, 1758): comparation between intensive and semi-intensive larval rearing system. Aquacult Res 41:433–449CrossRefGoogle Scholar
  36. Rotllant J, Tort L (1997) Cortisol and glucose responses after acute stress by net handling in the sparid red porgy previously subjected to crowding stress. J Fish Biol 51:21–28PubMedCrossRefGoogle Scholar
  37. Rotllant J, Pavlidis M, Kentouri M, Abad ME, Tort L (1997) Non-specific immune responses in the red porgy Pagrus pagrus after crowding stress. Aquaculture 156:279–290CrossRefGoogle Scholar
  38. Rotllant J, Tort L, Montero D, Pavlidis M, Martinez M, Wendelaar Bonga SE, Balm PHM (2003) Background colour influence on the stress response in cultured red porgy Pagrus pagrus. Aquaculture 223:129–139CrossRefGoogle Scholar
  39. Ruane NM, Carballo EC, Komen J (2002) Increased stocking density influences the acute physiological stress response of common carp Cyprinus carpio (L.). Aquacult Res 33:777–784CrossRefGoogle Scholar
  40. Rueda FM, Martínez FJ, Zamora S, Kentouri M, Divanach P (1998) Effect of fasting and refeeding on growth and body composition of red porgy, Pagrus pagrus L. Aquacult Res 29(6):447–452Google Scholar
  41. Sangiao-Alvarellos S, Guzmán JM, Laiz-Carrión R, Míguez JM, Martín del Rio MP, Mancera JM, Soengas JL (2005) Interactive effects of high stocking density and food deprivation on carbohydrate metabolism in several tissues of gilthead sea bream (Sparus aurata L.). J Exp Zool 303A:761–775CrossRefGoogle Scholar
  42. Sheridan MA, Mommsen TP (1991) Effects of nutritional state on in vivo lipid and carbohydrate metabolism of Coho Salmon, Oncorhynchus kisutch. Gen Comp Endo 81:473–483CrossRefGoogle Scholar
  43. Shimeno S, Kheyyali D, Takeda M (1990) Metabolic adaptation to prolonged starvation in carp. Nippon Suisan Gakk 56(1):35–41CrossRefGoogle Scholar
  44. Soengas JL, Polakof S, Chen X, Sangiao-Alvarellos S, Moon TW (2006) Glucokinase and hexokinase expression and activities in rainbow trout tissues: changes with food deprivation and refeeding. Am J Physiol Reg I 291:R810–R821CrossRefGoogle Scholar
  45. Tejera N, Cejas JR, Rodríguez C, Bjerkeng B, Jerez S, Bolaños A, Lorenzo A (2007) Pigmentation, carotenoids, lipid peroxides and lipid composition of skin of red porgy (Pagrus pagrus) fed diets supplemented with different astaxanthin sources. Aquaculture 270:218–230CrossRefGoogle Scholar
  46. Tejera N, Cejas JR, Rodríguez C, Jerez S, Pérez JA, Felipe B, Lorenzo A (2010) Pigmentation, carotenoids, lipid peroxides and lipid composition of red porgy (Pagrus pagrus) skin reared under open-cage conditions. Aquacult Res 41(7):1043–1053Google Scholar
  47. Uchida K, Kajimura S, Riley LG, Hirano T, Aida K, Grau EG (2003) Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol 134A(2):429–439Google Scholar
  48. Van der Salm AL, Martinez M, Flik G, Wendelaar Bonga SE (2004) Effects of husbandry conditions on the skin colour and stress response of red porgy, Pagrus pagrus. Aquaculture 241:371–386CrossRefGoogle Scholar
  49. Vargas-Chacoff L, Calvo Á, Ruiz-Jarabo I, Villarroel F, Muñoz JL, Tinoco AB, Cárdenas S, Mancera JM (2011) Growth performance osmoregulatory and metabolic modifications in red porgy fry, Pagrus pagrus, under different environmental salinities and stocking densities. Aquacult Res 42:1269–1278CrossRefGoogle Scholar
  50. Vigliano FA, Quiroga MI, Nieto JM (2002) Metabolic adaptation to food deprivation and refeeding in fish. Rev Ictiol 10:79–108Google Scholar
  51. Vijayan MM, Leatherland JF (1988) Effect of stocking density on the growth and stress-response in brook charr, Salvelinus fontinalis. Aquaculture 75:159–170CrossRefGoogle Scholar
  52. Vijayan MM, Ballantyne JS, Leatherland JF (1990) High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis. Aquaculture 88:371–381CrossRefGoogle Scholar
  53. Vijayan MM, Foster GD, Moon TW (1993) Effects of cortisol on hepatic carbohydrate metabolism and responsiveness to hormones in the sea raven, Hemitripterus americanus. Fish Physiol Biochem 12:327–335CrossRefGoogle Scholar
  54. Vijayan MM, Pereira C, Grau EG, Iwama GK (1997) Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comp Biochem Physiol 116C:89–95Google Scholar
  55. Wagner EJ, Bosakowski T, Intelmann S (1997) Combined effects of temperature and high pH on mortality and the stress response of rainbow trout after stocking. Trans Am Fish Soc 126(6):985–998CrossRefGoogle Scholar
  56. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Raúl Laiz-Carrión
    • 1
  • Inês Rosa Viana
    • 3
  • Juana Rosa Cejas
    • 2
  • Ignacio Ruiz-Jarabo
    • 3
  • Salvador Jerez
    • 2
  • Juan Antonio Martos
    • 3
  • Almansa Berro Eduardo
    • 2
  • Juan Miguel Mancera
    • 3
  1. 1.Instituto Español de OceanografíaCentro Oceanográfico de MálagaFuengirola, MálagaSpain
  2. 2.Instituto Español de OceanografíaCentro Oceanográfico de CanariasSanta Cruz de TenerifeSpain
  3. 3.Departamento de Biología, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto RealSpain

Personalised recommendations