Aquaculture International

, Volume 19, Issue 3, pp 445–457 | Cite as

Partial characterization of hepatopancreatic and extracellular digestive proteinases of wild and cultivated Octopus maya

  • R. Martínez
  • R. Sántos
  • A. Álvarez
  • G. Cuzón
  • L. Arena
  • M. Mascaró
  • C. Pascual
  • C. RosasEmail author


Proteinases from hepatopancreas (HP) and gastric juice (GJ) from wild and cultured red octopus (Octopus maya) were characterized. Hepatopancreas assays revealed optimal activity at pH 4, 9–10 and 10 for wild and pH 3, 8, and 9, for cultured octopuses, for total proteinases, trypsin and chymotrypsin, respectively. In the gastric juice, maximum activity was recorded at pH 6, 8, and 7 for total proteinases, trypsin, and chymotrypsin, respectively for both wild and cultured octopus. A reduction on enzyme activity of 70 and 20% was observed in HP and GJ extracts, respectively when protease inhibitor Pepstatin A was used. That result suggests that the main proteases in the HP were aspartic acid proteinases type (possibly Cathepsin D) and some of them were present in the GJ. Dissociating discontinuous polyacrylamide gel electrophoresis showed activity bands between 20 and 28, 30 and 34, 35 and 45, 60 and 70 kDa, and a last one between 75 and 100 kDa. We concluded that extracellular digestion of O. maya takes place in an acid environment, around pH 6. In contrast, intracellular digestion in the HP is developed at pHs between 3 and 4, where cathepsin D could be the most important enzyme for O. maya.


Cephalopods Digestive proteinases Hepatopancreas Gastric juice Octopus maya 



This work is part of the Ph.D. thesis of Rosario Martinez. Thanks are given to CONACYT for doctoral scholarship No. 207833/207137 to R.M. The present study was partially financed by DGAPA-UNAM project No. IN202909-3 and CONACYT—BASICO 50118 to C.R. Also thanks are given to Claudia Camaal and Richard Mena for providing specimens.


  1. Aguila J, Cuzon G, Pascual C, Domingues P, Gaxiola G, Sánchez A, Maldonado T, Rosas C (2007) The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: Digestive enzyme activity, blood metabolites, and energy balance. Aquaculture 273:641–655CrossRefGoogle Scholar
  2. Anson ML (1938) The estimation of pepsin, trypsin, papain. and cathepsin with hemoglobin. J Gen Physiol 22:78–89CrossRefGoogle Scholar
  3. Aranishi F, Hara K, Ishihara T (1992) Purification and characterization of cathepsin H from hepatopancreas of carp Cyprinus carpio. Comp Biochem Physiol 102B:499–505Google Scholar
  4. Bidder AM (1950) The digestive mechanism of the european squids Loligo vulgaris, Loligo forbesii, Alloteuthis media and Alloteuthis subulata. Q J Microsc Sci 91:1–43Google Scholar
  5. Boucaud-Camou E, Boucher-Rodoni R (1983) Feeding and digestion in cephalopods. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca. Academic Press, New York, pp 149–187Google Scholar
  6. Boucaud-Camou E, Boucher-Rodoni R, Mangold K (1976) Digestive absorption in Octopus vulgaris (Cephalopoda, Octopoda). J Zool 179:261–271CrossRefGoogle Scholar
  7. Boucher-Rodoni R, Mangold K (1985) Ammonia excretion during feeding and starvation in Octopus vulgaris. Mar Biol 86:193–197CrossRefGoogle Scholar
  8. Boucher-Rodoni R, Boucaud-Camou E, Mangold K (1987) Feeding and digestion. In: Boyle P (ed) Cephalopod life cycles. Academic Press, London, pp 85–108Google Scholar
  9. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  10. Cabrera JL, Defeo O (2001) Daily bioeconomical analysis in a multispecific artisanal fishery in Yucatán, Mexico. Aquat Living Resour 14:19–28CrossRefGoogle Scholar
  11. Cardenas-Lopez JL, Haard NF (2005) Cysteine proteinase activity in jumbo squid (Dosidiscus jigas) hepatopacreas extracts. J Food Biochem 29:171–186CrossRefGoogle Scholar
  12. Cardenas-Lopez JL, Haard NF (2009) Identification of a cysteine proteinase from Jumbo squid (Dosidicus gigas) hepatopancreas as cathepsin L. Food Chem 112:442–447CrossRefGoogle Scholar
  13. Castillo F, Pacheco R, Garcia F, Navarrete M, Félix M (2006) Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caeruleus). Food Chem 99:252–259CrossRefGoogle Scholar
  14. Charney J, Tomarelli R (1947) A colorimetric method for the determination of proteolytic activity of duodenal juice. Biol Chem 171:501–505Google Scholar
  15. Delmar EG, Largman C, Brodick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320PubMedCrossRefGoogle Scholar
  16. Domingues P, López N, Muñoz JA, Maldonado T, Gaxiola G, Rosas C (2007) Effects of an artificial diet on growth and survival of the Yucatan octopus, Octopus maya. Aquac Nutr 13:1–9CrossRefGoogle Scholar
  17. Ezquerra JM, Haard NF, Ramirez-Olivas R, Olivas-Burrola H, Velázquez-Sánchez CJ (2002) Influence of harvest season on the proteolytic activity of hepatopancreas and mantle tissue from jumbo squid (Dosidiscus gigas). J Food Biochem 26:459–475CrossRefGoogle Scholar
  18. Fu X, Xue C, Miao B, Li Z, Gao X, Yang W (2005) Characterization from the digestive tract of sea cucumber (Stichopus japonicus): high alkaline protease activity. Aquaculture 246:321–329CrossRefGoogle Scholar
  19. García-Esquivel Z, Felbeck H (2006) Activity of digestive enzymes along the gut of juvenile red abalone, Haliotis rufescens, fed natural and balanced diets. Aquaculture 261:615–625CrossRefGoogle Scholar
  20. Hernández A, Hernández A, Arreguin R, Rodríguez A (1998) Purification and characterization of several digestive proteinases from the blue abalone, Haliotis fulgens. Aquaculture 159:203–216CrossRefGoogle Scholar
  21. Koueta N, Boucaud-Camou E (1999) Food intake and growth in reared early juvenile cuttlefish Sepia officinalis L. Mollusca Cephalopoda. J Exp Mar Biol Ecol 240:93–109CrossRefGoogle Scholar
  22. Koueta N, Castro BG, Boucaud-Camou E (2000) Biochemical indices for instantaneous growth estimation in young cephalopod Sepia officinalis L. J Mar Sci 57:1–7Google Scholar
  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  24. Le Bihan E, Perrin A, Koueta N (2006) Influence of peptide rate of the diet on survival growth and digestive enzyme activities of juvenile cuttlefish Sepia officinalis. Vie et Millieu 56:139–145Google Scholar
  25. Mangold K (1989) Céphalopodes. In: Grassé PP (ed) Traité de Zoologie, Tome V, fasc. 4. Masson, pp 321–373Google Scholar
  26. Moguel C, Mascaró M, Avila-Poveda O, Caamal C, Sanchez A, Pascual C, Rosas C (2010) Morphological, physiological, and behavioral changes during postembryonic development of Octopus maya (Mollusca: Cephalopoda). Aquat Biol 9:35–48CrossRefGoogle Scholar
  27. Murray RK, Mayes PA, Granner DK, Rodwell VW (2001) Bioquímica de Harper. In: Manual Moderno, 15a. ed, Mexico, pp 747–772Google Scholar
  28. Nägler DK, Lechner AM, Oettl A, Kozaczynska K, Scheuber H-P, Gippner-Steppert C, Bogner V, Biberthaler P, Jochum M (2006) An enzyme-linked immonosorbent assay for human cathepsin X, a potential new inflammatory marker. J Immunol Methods 308:241–250PubMedCrossRefGoogle Scholar
  29. Perera E, Moyano F, Díaz M, Perdomo-Morales R, Montero-Alejo V, Alonso E, Carrillo O, Galich G (2008) Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus. Comp Biochem Physiol 150:247–254Google Scholar
  30. Pérez Lozada M, Guerra A, Sanjuan A (2002) Allozyme divergence supporting the taxonomic separation of Octopus mimus and Octopus maya from Octopus vulgaris (Cephalopoda: Octopus). Bull Mar Sci 71(2):653–664Google Scholar
  31. Perrin A (2004) Etude experimentale des capacites digestives chez la seiche, Sepia officinalis L. (Mollusque, cephalopode): impact de lálimentation, indicede condition nutritionnelle et formulation dún aliment artificiel. PhD Thesis, Universite de Caen, pp 1–152Google Scholar
  32. Perrin A, Le Bihan E, Koueta N (2004) Experimental study of enriched frozen diet on digestive enzymes and growth of juvenile cuttlefish Sepia officinalis L. (Mollusca Cephalopoda). J Exp Mar Biol Ecol 311:267–285CrossRefGoogle Scholar
  33. Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179:465–473CrossRefGoogle Scholar
  34. Rosas C, Cuzon G, Pascual C, Gaxiola G, López N, Maldonado T, Domingues P (2007) Energy balance of Octopus maya fed crab and artificial diet. Mar Biol 152:371–378CrossRefGoogle Scholar
  35. Rosas C, Tut J, Baeza J, Sánchez A, Sosa V, Pascual C, Arena L, Domingues P, Cuzon G (2008) Effect of type of binder on growth, digestibility, and energetic balance of Octopus maya. Aquaculture 275:291–297CrossRefGoogle Scholar
  36. Rosas C, Sánchez A, Pascual C, Aguila J, Maldonado T, Domingues P (2010) Effects of two dietary protein levels on energy balance and digestive capacity of Octopus maya. Aquac Int. doi: 10.1007/s10499-010-9350-7 Google Scholar
  37. Solís Ramírez MJ (1988) El recurso pulpo del Golfo de México y el Caribe. In: SEPESCA (ed) Los recursos pesqueros del país. XXV Aniversario del Instituto Nacional de la PescaGoogle Scholar
  38. Solís Ramírez MJ, Chávez EA (1986) Evaluación y régimen optimo de pesca del pulpo en la Península de Yucatán, México. Ann Cent Cienc Mar Limnol, UNAM 13(3):1–18Google Scholar
  39. Stauffer CE (1989) Enzyme assay for food scientists. Van Nostrand Reinhold, New YorkGoogle Scholar
  40. Voss GL, Solís-Ramírez MJ (1966) Octopus maya, a new species from the Bay of Campeche. Bull Mar Sci 16(3):615–625Google Scholar
  41. Wilson LR, Good RT, Panaccio M, Wijffels GL, Sandeman RM, Spithill TW (1998) Fasciola hepatica: characterization and cloning of the major cathepsin B protease secreted by newly excysted juvenile liver fluke. Exp Parasitol 88:85–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • R. Martínez
    • 1
  • R. Sántos
    • 2
  • A. Álvarez
    • 3
  • G. Cuzón
    • 4
  • L. Arena
    • 5
  • M. Mascaró
    • 5
  • C. Pascual
    • 5
  • C. Rosas
    • 5
    Email author
  1. 1.División de Posgrado, FMVZUniversidad Autónoma de YucatánMéridaMexico
  2. 2.Departamento de Nutrición, FMVZUniversidad Autónoma de YucatánMéridaMexico
  3. 3.Unidad de Ciencias BiológicasUJATVillahermosaMexico
  4. 4.IfremerTahitiFrench Polynesia
  5. 5.Unidad Multidisciplinaria de Docencia e Investigación, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoSisalMexico

Personalised recommendations