Aquaculture International

, Volume 18, Issue 3, pp 433–445 | Cite as

Growth and blood chemistry of Atlantic halibut (Hippoglossus hippoglossus L.) in relation to salinity and continuous light

  • Arnþór Gústavsson
  • Albert K. ImslandEmail author
  • Snorri Gunnarsson
  • Jón Árnason
  • Ingólfur Arnarson
  • Arnar F. Jónsson
  • Heiðdís Smáradóttir
  • Helgi Thorarensen


In order to study the possible interactive effects of salinity and photoperiod on growth, feed conversion, and blood chemistry in juvenile halibut, 2,604 (initial mean weight 26.8 g ± 0.2 SEM) juvenile halibut were exposed to six different combinations of salinities (13, 21, or 27‰) and photoperiods [continuous light, C and simulated natural photoperiod (65°N), SNP] for 129 days. Improved (10–20%) growth and 10–24% higher feed conversion efficiency were observed at low and intermediate salinities compared to the high salinity groups. Improved feed conversion efficiency (20%) and temporary growth enhancing effects (10%) of continuous light were observed, but effects faded out as day length in the simulated natural photoperiod group increased. No interactive effects of photoperiod and salinity on growth feed conversion or measured blood chemistry variables (blood sodium, pH level, haematocrit, bicarbonate content, and total carbon dioxide). It is suggested that juvenile Atlantic halibut should be reared at low and intermediate salinities and at continuous light, as this will improve growth and increase feed conversion efficiency.


Atlantic halibut Blood chemistry Growth Feed conversion efficiency Continuous light Salinity 



The authors would like to thank the technical staff at the Hólar Aquaculture Research Station at Sauðárkrókur for valuable assistance prior to and during the experimental period. Financial support was given by the Icelandic AVS fund (AVS R031 05) and by the European Commission (EC contract no. 016869, RACEWAYS).


  1. Aune A, Imsland AK, Pittman K (1997) Growth of juvenile halibut, Hippoglossus hippoglossus (L.), under a constant and switched temperature regime. Aquat Res 28:931–939. doi: 10.1111/j.1365-2109.1997.tb01018.x CrossRefGoogle Scholar
  2. Björnsson B, Tryggvadóttir SV (1996) Effects of size on optimal temperature for growth and growth efficiency of immature Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 142:33–42. doi: 10.1016/0044-8486(95)01240-0 CrossRefGoogle Scholar
  3. Boeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol 130C:411–423Google Scholar
  4. Brett JR, Groves TDD (1979) Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology. Bioenergetics and growth, vol 8. Academic Press, New York, pp 279–352Google Scholar
  5. Brill R, Swimmer Y, Taxboel C, Cousins K, Lowe T (2001) Gill and intestinal Na+–K+ ATPase activity, and estimated maximal osmoregulatory costs, in three high energy-demand teleosts: yellowfin tuna (Thunnus albacares), skipjack tuna (Katsuwonus pelamis), and dolphin fish (Coryphaena hippurus). Mar Biol (Berl) 138:935–944. doi: 10.1007/s002270000514 CrossRefGoogle Scholar
  6. Bromage NR, Porter MJR, Randall CF (2001) The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197:63–98. doi: 10.1016/S0044-8486(01)00583-X CrossRefGoogle Scholar
  7. Claiborne JB (1998) Acid-base regulation. In: Evans DH (ed) The physiology of fishes, 2nd edn. CRC Press, New York, pp 177–198Google Scholar
  8. FAO (2000) Fish stat plus: universal software for fishery statistical time series. Version 2.3. FAO fisheries department, fishery information, data and statistics unitGoogle Scholar
  9. Foss A, Evensen TH, Imsland AK, Oiestad V (2001) Effects of reduced salinities on growth, food conversion efficiency and osmoregulatory status in the spotted wolffish. J Fish Biol 5:416–426CrossRefGoogle Scholar
  10. Gaumet F, Boeuf G, Truchot JP, Nonnotte G (1994) Effects of environmental water salinity on blood acid-base status in juvenile turbot (Scophthalmus maximus L.). Comp Biochem Physiol 109A:985–994. doi: 10.1016/0300-9629(94)90247-X CrossRefGoogle Scholar
  11. Gaumet F, Boeuf G, Severe A, Le Roux A, Mayer-Gostan N (1995) Effects of salinity on the ionic balance and growth of juvenile turbot. J Fish Biol 47:865–876. doi: 10.1111/j.1095-8649.1995.tb06008.x CrossRefGoogle Scholar
  12. Gutt J (1985) The growth of juvenile flounders (Platichthys flesus L.) at salinities of 0, 5, 15 and 35‰. J Appl Ichthyol 1:17–26. doi: 10.1111/j.1439-0426.1985.tb00406.x CrossRefGoogle Scholar
  13. Hallaråker H, Folkvord A, Stefansson SO (1995) Growth of juvenile halibut (Hippoglossus hippoglossus) related to temperature, day length and feeding regime. Neth J Sea Res 34:139–147. doi: 10.1016/0077-7579(95)90022-5 CrossRefGoogle Scholar
  14. Harrenstien LA, Tornquist SJ, Miller-Morgan TJ, Fodness BG, Clifford KE (2005) Evaluation of a point-of-care blood analyzer and determination of reference ranges for blood parameters in rockfish. J Am Vet Med Assoc 226:255–265. doi: 10.2460/javma.2005.226.255 CrossRefPubMedGoogle Scholar
  15. Haug T (1990) Biology of the Atlantic halibut, Hippoglossus hippoglossus (L., 1758). Adv Mar Biol 26:1–70. doi: 10.1016/S0065-2881(08)60198-4 CrossRefGoogle Scholar
  16. Houde ED, Schekter RC (1981) Growth rates, rations and cohort consumption of marine fish larvae in relation to prey concentrations. Rapp Proc-verb Réun Con inter l’Explor Mer 178:441–453Google Scholar
  17. Imsland AK, Foss A, Gunnarsson S, Berntssen M, FitzGerald R, Bonga SW, van Ham E, Nævdal G, Stefansson SO (2001) The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture 198:353–367. doi: 10.1016/S0044-8486(01)00507-5 CrossRefGoogle Scholar
  18. Imsland AK, Foss A, Bonga SW, van Ham E, Stefansson SO (2002) Comparison of growth and RNA/DNA ratios in three populations of juvenile turbot reared at two salinities. J Fish Biol 60:288–300Google Scholar
  19. Imsland AK, Gunnarsson S, Foss A, Stefansson SO (2003) Gill Na+, K+ -ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture 218:671–683. doi: 10.1016/S0044-8486(02)00423-4 CrossRefGoogle Scholar
  20. Imsland AK, Foss A, Stefansson SO, Mayer I, Norberg B, Roth B, Jenssen MD (2006) Growth, feed conversion efficiency and growth heterogeneity in Atlantic halibut (Hippoglossus hippoglossus) reared at three different photoperiods. Aquat Res 37:1099–1106. doi: 10.1111/j.1365-2109.2006.01533.x CrossRefGoogle Scholar
  21. Imsland AK, Gústavsson A, Gunnarsson S, Foss A, Árnason J, Jónsson A, Smáradóttir H, Arnarson I, Thorarensen H (2008) Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 274:254–259Google Scholar
  22. Imsland AK, Gunnarsson S, Ásgeirsson Á, Krisjánsson B, Árnason J, Jónsson A, Smáradóttir H, Thorarensen H (2009) Long term rearing of Atlantic halibut at intermediate salinities: effect on growth and blood physiology. J World Aquac Soc 40 (in press)Google Scholar
  23. Jobling M (1994) Fish bioenergetics. Chapman and Hall, London, p 309Google Scholar
  24. Jonassen TM, Imsland AK, Stefansson SO (1999) The interaction of temperature and fish size on growth of juvenile halibut. J Fish Biol 54:556–572. doi: 10.1111/j.1095-8649.1999.tb00635.x CrossRefGoogle Scholar
  25. Jonassen TM, Imsland AK, Kadowaki S, Stefansson SO (2000) Interaction of temperature and photoperiod on growth of Atlantic halibut, Hippoglossus hippoglossus L. Aquat Res 31:219–227. doi: 10.1046/j.1365-2109.2000.00447.x CrossRefGoogle Scholar
  26. Lambert Y, Dutil JD, Munro J (1994) Effects of intermediate and low salinity conditions on growth rate and food conversion of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 51:1569–1576. doi: 10.1139/f94-155 CrossRefGoogle Scholar
  27. McCormick SD, Saunders RL, MacIntyre AD (1989) The effect of salinity and ration level on growth rate and conversion efficiency of Atlantic salmon (Salmo salar) smolts. Aquaculture 82:173–180. doi: 10.1016/0044-8486(89)90406-7 CrossRefGoogle Scholar
  28. Morgan JD, Iwama GK (1991) Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and Fall chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 48:2083–2094CrossRefGoogle Scholar
  29. Moustakas CT, Watanabe WO, Copeland KA (2004) Combined effects of photoperiod and salinity on growth, survival, and osmoregulatory ability of larval southern flounder Paralichthys lethostigma. Aquaculture 229:159–179. doi: 10.1016/S0044-8486(03)00366-1 CrossRefGoogle Scholar
  30. Shaw HM, Saunders RL, Hall HC (1975) Environmental salinity: its failure to influence growth of Atlantic salmon (Salmo salar) parr. J Fish Res Board Can 32:1821–1824Google Scholar
  31. Sigurðsson A (1956) Contribution to the life history of the halibut at the west of Iceland in recent years (1936–1950). Medd Dan Fisk Havunder 1:1–24Google Scholar
  32. Simensen LM, Jonassen TM, Imsland AK, Stefansson SO (2000) Photoperiod regulation of growth of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 190:119–128. doi: 10.1016/S0044-8486(00)00397-5 CrossRefGoogle Scholar
  33. Steinmetz HW, Vogt R, Kästner S, Riond B, Hatt JM (2007) Evaluation of the i-STAT portable clinical analyzer in chickens (Gallus gallus). J Vet Diagn Invest 19:382–388PubMedGoogle Scholar
  34. Swanson C (1998) Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J Exp Biol 201:3355–3366PubMedGoogle Scholar
  35. Wilson RW, Taylor EW (1993) Differential responses to copper in rainbow-trout (Oncorhynchus mykiss) acclimated to sea-water and brackish-water. J Comp Physiol 163B:239–246Google Scholar
  36. Woo NYS, Chung KC (1995) Tolerance of Pomacanthus imperator to hypoosmotic salinities: changes in body composition and hepatic enzyme activities. J Fish Biol 47:70–81Google Scholar
  37. Zar JH (1984) Biostatistical analysis. Prentice-Hall, New Jersey, p 718Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Arnþór Gústavsson
    • 1
  • Albert K. Imsland
    • 2
    • 3
    Email author
  • Snorri Gunnarsson
    • 2
    • 3
  • Jón Árnason
    • 4
    • 5
  • Ingólfur Arnarson
    • 1
  • Arnar F. Jónsson
    • 6
  • Heiðdís Smáradóttir
    • 6
  • Helgi Thorarensen
    • 1
  1. 1.Hólar University CollegeSauðárkrókurIceland
  2. 2.Akvaplan-niva Iceland OfficeKópavogurIceland
  3. 3.Department of BiologyHigh Technology Centre, University of BergenBergenNorway
  4. 4.Laxá Feed MillAkureyriIceland
  5. 5.MatísReykjavikIceland
  6. 6.Fiskey hfAkureyriIceland

Personalised recommendations