Aquaculture International

, Volume 17, Issue 5, pp 479–489 | Cite as

Stringed bed suspended bioreactors (SBSBR) for in situ nitrification in penaeid and non-penaeid hatchery systems

  • V. J. Rejish Kumar
  • Cini Achuthan
  • N. J. Manju
  • Rosamma Philip
  • I. S. Bright Singh


For establishing nitrification in prawn (non-penaeid, salinity 10–15 ppt) and shrimp (penaeid, salinity 30–35 ppt) larval production systems, a stringed bed suspended bioreactor (SBSBR) was designed, fabricated, and validated. It was fabricated with 5 mm polystyrene and low density polyethylene beads as the substrata for ammonia and nitrite oxidizing bacterial consortia, respectively, with an overall surface area of 684 cm2. The reactors were activated in a prototype activator and were transported in polythene bags to the site of testing. Performance of the reactors activated with the nitrifying bacterial consortia AMONPCU-1 (ammonia oxidizers for non-penaeid culture) and NIONPCU-1 (nitrite oxidizers for non-penaeid culture) was evaluated in a Macrobrachium rosenbergii larval rearing system and those activated with AMOPCU-1 (ammonia oxidizers for penaeid culture) and NIOPCU-1 (nitrite oxidizers for penaeid culture) in a Penaeus monodon seed production system. Rapid setting up of nitrification could be observed in both the static systems which resulted in a higher relative per cent survival of larvae.


Closed system shrimp hatchery Immobilization Nitrification Nitrifying bioreactors Nitrifying consortia Shrimp/prawn larval production 



Ammonia oxidizers for non-penaeid culture


Ammonia oxidizers for penaeid culture


Infectious hypodermal and hematopoietic necrosis virus


Nitrifying bacterial consortia production unit


Nitrite oxidizers for non-penaeid culture


Nitrite oxidizers for penaeid culture


Recirculating aquaculture systems


Relative percent survival


Stringed bed suspended bioreactor


Total ammonia nitrogen


Total nitrite nitrogen


White spot syndrome virus


Yellow head virus



This work was carried out with the financial assistance from Department of Biotechnology, Government of India, under the project no BT/AA/03ds/79/94 and BT/PR 179/AAQ/03/092/99. M/s Rosen Fisheries, Trichur, Kerala and Matsyafed Shrimp Hatchery, Ponnani, Kerala are gratefully acknowledged for extending the larval rearing facility for the demonstration and validation. The technical assistance extended by Mr. Anishmon, Project Assistant, NCAAH, is acknowledged.


  1. Achuthan C (2000) Development of bioreactors for nitrifying water in closed system hatcheries of penaeid and non-penaeid prawns. PhD Thesis, Cochin University of Science and Technology, Kochi, IndiaGoogle Scholar
  2. Achuthan C, Rejish Kumar VJ, Manju NJ et al (2006) Development of nitrifying bacterial consortia from Indian waters for immobilizing in nitrifying bioreactors designed for penaeid and non-penaeid larval rearing systems in the tropics. Indian J Mar Sci 35:240–248Google Scholar
  3. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, WashingtonGoogle Scholar
  4. Babu MM, Marian MP (1998) Live transport of gravid Penaeus indicus using coconut mesocarp dust. Aquacult Eng 18:149–155. doi: 10.1016/S0144-8609(98)00022-3 CrossRefGoogle Scholar
  5. Bendschneider K, Robinson RJ (1952) A spectrophotometric method for the determination of nitrite in seawater. J Mar Res 11:87Google Scholar
  6. Bower CE, Turner DT (1981) Accelerated nitrification in new seawater culture systems: effectiveness of commercial additives and seed media from established system. Aquaculture 24:1–9. doi: 10.1016/0044-8486(81)90038-7 CrossRefGoogle Scholar
  7. Cavalli RO, Berghe EV, Lavens P et al (2000) Ammonia toxicity as a criterion for the evaluation of larval quality in the prawn Macrobrachium rosenbergii. Comp Biochem Physiol C 125:333–343Google Scholar
  8. Chen JC, Lee Y (1997) Effects of nitrite on mortality, ion regulation and acid-base balance of Macrobrachium rosenbergii at different external chloride concentrations. Aquat Toxicol 39:291–305. doi: 10.1016/S0166-445X(97)00029-5 CrossRefGoogle Scholar
  9. Cheng SY, Chen JC (1999) Hemolymph oxygen affinity and the fractionation of oxyhemocyanin and deoxyhemocyanin for Penaeus monodon exposed to elevated nitrite. Aquat Toxicol 45:35–46. doi: 10.1016/S0166-445X(98)00090-3 CrossRefGoogle Scholar
  10. Cheng W, Hsiao IS, Chen JC (2004) Effect of nitrite on immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Dis Aquat Organ 60:157–164. doi: 10.3354/dao060157 PubMedCrossRefGoogle Scholar
  11. Chin TS, Chen JC (1987) Acute toxicity of ammonia to larvae of the Tiger prawn, Penaeus monodon. Aquaculture 66:247–253. doi: 10.1016/0044-8486(87)90110-4 CrossRefGoogle Scholar
  12. Colt J (2006) Water quality requirements for reuse systems. Aquacult Eng 34:143–156. doi: 10.1016/j.aquaeng.2005.08.011 CrossRefGoogle Scholar
  13. Colt J, Lamoureux J, Patterson R et al (2006) Reporting standards for biofilter performance studies. Aquacult Eng 34:377–388. doi: 10.1016/j.aquaeng.2005.09.002 CrossRefGoogle Scholar
  14. Crab R, Avnimelech Y, Defoirdt T et al (2007) Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270:1–14. doi: 10.1016/j.aquaculture.2007.05.006 CrossRefGoogle Scholar
  15. Eding EH, Kamstra A, Verreth JAJ et al (2006) Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquacult Eng 34:234–260. doi: 10.1016/j.aquaeng.2005.09.007 CrossRefGoogle Scholar
  16. Fielder S, Allan GL (1997) Inland production of marine fish. In: Hyde K (ed) The new rural industries: a hand book for farmers and investors. Rural Industries Research and Development Corporation, Australia, pp 108–113Google Scholar
  17. Furukawa K, Ike A, Ryu S et al (1993) Nitrification of NH4–N+ polluted seawater by immobilized acclimated marine nitrifying sludge (AMNS). J Ferment Bioeng 76:515–520. doi: 10.1016/0922-338X(93)90251-3 CrossRefGoogle Scholar
  18. Gram L, Melchiorsen J, Spanggaard B et al (1999) Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl Environ Microbiol 65:969–973PubMedGoogle Scholar
  19. Greiner AD, Timmons MB (1998) Evaluation of the nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility. Aquacult Eng 18:189–200. doi: 10.1016/S0144-8609(98)00030-2 CrossRefGoogle Scholar
  20. Guillen JL, Endo M, Turnball JF et al (1994) Skin-responses and mortalities in the larvae of Japanese croaker exposed to ammonia. Fish Sci 60:547–550Google Scholar
  21. Gutierrez-Wing MT, Malone RF (2006) Biological filters in aquaculture: trends and research directions for freshwater and marine applications. Aquacult Eng 34:163–171. doi: 10.1016/j.aquaeng.2005.08.003 CrossRefGoogle Scholar
  22. Jewell WJ, Cummings RJ (1990) Expanded bed treatment of complete recycle aquaculture system. Water Sci Technol 22:443–450Google Scholar
  23. Malone RF, Beecher LE (2000) Use of floating bead filters to recondition recirculating waters in warmwater aquaculture production systems. Aquacult Eng 22:57–74. doi: 10.1016/S0144-8609(00)00032-7 CrossRefGoogle Scholar
  24. Malone RF, Pfeiffer JP (2006) Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquacult Eng 34:389–402. doi: 10.1016/j.aquaeng.2005.08.007 CrossRefGoogle Scholar
  25. Manthe DP, Malone RF (1987) Chemical addition for accelerated biological filter acclimation in closed bluecrab shedding systems. Aquacult Eng 6:227–236. doi: 10.1016/0144-8609(87)90006-9 CrossRefGoogle Scholar
  26. Manthe DP, Malone RF, Perry H (1985) Water quality fluctuations in response to variable loading in a commercial closed blue crab shedding system. J Shellfish Res 3:175–182Google Scholar
  27. Masser MP, Rakocy J, Losordo TM (1999) Recirculating aquaculture tank production systems. Management of recirculating systems. SRAC Publication No. 452 USDAGoogle Scholar
  28. Naqvi AA, Adhikari S, Pillai BR et al (2007) Effect of ammonia-N on growth and feeding Macrobrachium rosenbergii (De-Man). Aquacult Res 38:847–851. doi: 10.1111/j.1365-2109.2007.01736.x CrossRefGoogle Scholar
  29. Nijhof M, Bonverdeur J (1990) Fixed film nitrification characteristics in sea-water recirculating fish culture system. Aquaculture 87:133–143. doi: 10.1016/0044-8486(90)90270-W CrossRefGoogle Scholar
  30. Russo RC, Thruston RV (1991) Toxicity of ammonia, nitrite and nitrate to fishes. In: Brune DE, Tomasso JR (eds) Aquaculture and water quality advances in world aquaculture, 3. World Aquaculture Society, Baton Rouge, LA, pp 58–89Google Scholar
  31. Singh S, Ebeling J, Wheaton F (1999) Water quality trials in four recirculating aquacultural system configurations. Aquacult Eng 20:75–84. doi: 10.1016/S0144-8609(99)00003-5 CrossRefGoogle Scholar
  32. Solorzano L (1969) Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol Oceanogr 14:799–801CrossRefGoogle Scholar
  33. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board Canada. Bulletin 167Google Scholar
  34. Sung-Koo K, Kong I, Lee B et al (2000) Removal of ammonium–N from a recirculation aquaculture system using an immobilized nitrifier. Aquacult Eng 21:139–150. doi: 10.1016/S0144-8609(99)00026-6 CrossRefGoogle Scholar
  35. Timmons MB, Holder JL, Ebeling JM (2006) Application of microbead biological filters. Aquacult Eng 34:332–343. doi: 10.1016/j.aquaeng.2005.07.003 CrossRefGoogle Scholar
  36. Van Rijn J, Rivera G (1990) Aerobic and anaerobic biofilteration in an aquaculture unit—nitrite accumulation as a result of nitrification and denitrification. Aquacult Eng 9:217–234. doi: 10.1016/0144-8609(90)90017-T CrossRefGoogle Scholar
  37. Wajsbrot N, Gasith A, Diamant A et al (1993) Chronic toxicity of ammonia to juvenile gilthead seabream Sparus aurata and related histopathological effects. J Fish Biol 42:321–328. doi: 10.1111/j.1095-8649.1993.tb00336.x CrossRefGoogle Scholar
  38. Wang WN, Wang AL, Zhang YJ et al (2004) Effects of nitrite on lethal and immune response of Macrobrachium nipponense. Aquaculture 232:679–686. doi: 10.1016/j.aquaculture.2003.08.018 CrossRefGoogle Scholar
  39. Westerman PW, Losordo TM, Wildhaber ML (1993) Evaluation of various biofilters in an intensive recirculation fish production facility. In: Techniques for modern aquaculture. Proceedings of an aquacultural engineering conference, Wa. ASAE, St. Joseph, MI, 21–23 June 1993, pp 315–325Google Scholar
  40. Yang L, Chou LS, Shiek WK (2001) Biofilter treatment of aquaculture water for reuse applications. Water Res 35:3097–3108. doi: 10.1016/S0043-1354(01)00036-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • V. J. Rejish Kumar
    • 1
  • Cini Achuthan
    • 1
  • N. J. Manju
    • 1
  • Rosamma Philip
    • 2
  • I. S. Bright Singh
    • 1
  1. 1.National Center for Aquatic Animal HealthCochin University of Science and TechnologyCochinIndia
  2. 2.Department of Marine Biology, Microbiology and Biochemistry, School of Ocean Science and TechnologyCochin University of Science and TechnologyCochinIndia

Personalised recommendations