Advertisement

Aquaculture International

, Volume 15, Issue 3–4, pp 201–210 | Cite as

Changes in fish production effectivity in eutrophic fishponds—impact of zooplankton structure

  • Jan PotužákEmail author
  • Jan Hůda
  • Libor Pechar
Original Paper

Abstract

Fishponds were and are purposeful water structures. Fish production is their main function and rational management is an inevitable condition for their existence. The present high level of fishpond eutrophication results in nutrients overloading. The effect of the high level of nutrients is emphasized by top-down control of zooplankton by high fish stock densities. Currently the zooplankton is represented by small species such as nauplii, small cyclopoid copepods, small species of Cladocera and rotifers that are not so effective filtrators. The high eutrophic level brings about high primary production (mostly with predominance of inedible Cyanophytes) which cannot be used by this type of zooplankton. The main consequences of high eutrophication are large fluctuations in basic environmental parameters and a decrease in production effectivity. It is expected that the utilization efficiency of the enormous primary production through zooplankton into fish production is low. Therefore, maintaining ecological stability and healthy, sound functioning of the ecosystem, meaning without considerable fluctuations, represents an important task in sustainable fishpond management.

Keywords

Fishponds Zooplankton Eutrophication Fishpond managemet Primary production 

Notes

Acknowledgements

This study was supported by the projects: MSM 6007665806 of the Ministry of Education, SM/640/18/03 and SL/1/6/04 of the Ministry of the Environment, and AV0Z60870520 of the Academy of Sciences of the Czech Republic.

References

  1. Barica J (1993) Ecosystem stability and sustainability: a lesson from algae. Verh Internat Verein Limnol 25:307–311Google Scholar
  2. Bogdan KG, McNaught DC (1975) Selective feeding by Daphnia and Diaptomus. Verh Internat Verein Limnol 19:2935–2942Google Scholar
  3. Carney JH (1990) A general hypothesis for the strength of food web interactions in relation to trophic state. Verh Internat Verein Limnol 24:487–492Google Scholar
  4. Fott J (1972) Observation on primary production of phytoplankton in two fish ponds. In: Kajak Z, Hillbricht-Ilkowska A (eds) Productivity problems of freshwaters. Warszawa-Krakow, pp 673–681Google Scholar
  5. Fott J, Kořínek V, Pražáková M, Vondruš B, Forejt K (1974) Seasonal development of phytoplankton in fishponds. Int Rev Ges Hydrobiol 59:629–641CrossRefGoogle Scholar
  6. Fott J, Pechar L, Pražáková M (1980) Fish as a factor controlling water quality in ponds. In: Barica J, Mur LR (eds) Hypertrophic ecosystems. Developments in Hydrobiology. The Hague, pp 255–261Google Scholar
  7. Hrbáček J (1962) Species composition and the amount of zooplankton in relation to fish stock. Rozpravy ČSAV 72:1–116Google Scholar
  8. Hrbáček J (1964) Contribution to the ecology of water-bloom forming blue-green algae—Aphanizomenon flos-aquae and Microcystis aeruginosa. Verh Internat Verein Limnol 15:837–846Google Scholar
  9. Hrbáček J, Albertová O, Desortová B, Gottwaldová V, Popovský J (1986) Relation of the Zooplankton Biomass and Share of Large Cladocerans on the Concentration of Total Phosphorus, Chlorophyll-a and Transparency in Hubenov and Vrchlice Reservoirs. Limnologica (Berlin) 17:301–308Google Scholar
  10. IUCN (1997) Fishing for a living—the ecology and economics of fishponds in central Europe. Environmental Research Serie 11. IUCN, Gland, 184 ppGoogle Scholar
  11. Kitchell JF, Bartell SM, Carpenter SR, Hall DJ, McQueen DJ, Neill WE, Scavia D, Werner EE (1988) Epistemology, experiments, and pragmatism. In: Carpenter SR (ed) Complex interactions in lake communities. Springer-Verlag, New York, pp 263–280Google Scholar
  12. Komárková J, Faina R, Pařízek J (1986) Influence of the watershed and fish stock upon the fishpond biocenoses. Limnologica (Berlin) 17:335–354Google Scholar
  13. Kořínek V (1967) Primary production of plankton in ponds in vicinity of Blatná. Arch Hydrobiol 63:520–32Google Scholar
  14. Kořínek V, Fott J, Fuksa J, Lelák J, Pražáková M (1987) Carp ponds of central Europe. In: Michael RG (ed) Managed aquqtic ecosystems. Ecosystems of the World, vol 29. Elsevier, Amsterdam, pp 29–63Google Scholar
  15. Losos B, Heteša J (1971) Hydrobiological studies on the Lednické rybníky ponds. Acta Scientiae Naturalis, Brno 5:1–54Google Scholar
  16. Pechar L (1987) Use of the acetone-methanol mixture for extraction and spectrophotometric determination of chlorophyll a in phytoplankton. Arch Hydrobiol Suppl 78, Algological Studies 46:99–117Google Scholar
  17. Pechar L (1995) Long-term changes in fish pond management as an uplanned ecosystem experiment: Importance of zooplankton structure, nutrients and light for species composition of cyanobacterial blooms. Wat Sci Tech 32(4):187–196Google Scholar
  18. Pechar L (2000) Impacts of long-term changes in fishery management on the trophic level and water quality in Czech fish ponds. Fisheries Management and Ecology 7(1–2):23–32CrossRefGoogle Scholar
  19. Pechar L, Přikryl I, Faina R (2002) Hydrobiological evaluation of Třeboň fishponds since the end of the nineteenth century In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. Paris, pp 31–61Google Scholar
  20. Peters RH, Downing JA (1984) Empirical analysis of zooplankton filtering and feeding rates. Limnol Oceanogr 29:763–784Google Scholar
  21. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  22. Porter KG, Gerritsen J, Orcutt JD Jr (1982) The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration by Daphnia. Limnol and Oceanogr 27:935–949CrossRefGoogle Scholar
  23. Přikryl I (1996) Development of fishpond management in Bohemia and its projection in the zooplankton structure, a potential criterion of the fishponds biological value. In: Flajšhans M (ed) Sborník vědeckých prací k 75. výročí založení VÚRH. Výzkumný ústav rybářský a hydrobiologický, Vodňany (in Czech), pp 151–164Google Scholar
  24. Seďa J, Duncan A (1994) Low fish predation pressure in London reservoirs: 2. consequences to zooplankton community structure. Hydrobiologia 291:179–191CrossRefGoogle Scholar
  25. Šusta J (1898) Fünf Jahrhunderete der Teichwirtschaft zu Wittingau. Stettin. Czech translation by Lhotský O (1995) Pět století rybničního hospodářství v Třeboni. Caprio, Třeboň (in Czech), 212 ppGoogle Scholar
  26. Talling JF (1957) Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol 56:29–50CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Faculty of Agriculture, Applied Ecology LaboratoryUniversity of South BohemiaČeske BudějoviceCzech Republic
  2. 2.The Fishery Group Třeboň, Třeboň FisheryTřeboňCzech Republic
  3. 3.Academy of Sciences of the Czech Republik, Wetland Laboratory, Institute of System Biology and EcologyTřeboňCzech Republic

Personalised recommendations