Aquaculture International

, 14:219

Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758)

  • A. S. Mahious
  • F. J. Gatesoupe
  • M. Hervi
  • R. Metailler
  • F. Ollevier
Article

Abstract

Preliminary experiments were undertaken to investigate the effect of dietary inulin (Raftiline  ST), oligofructose (Raftilose  P95) and lactosucrose on the growth and intestinal bacteria of the marine carnivorous turbot, Psetta maxima. Turbot larvae were weaned on compound diets containing 2% Rafiline  ST, 2% Raftilose P95 or 2% lactosucrose; 2% cellulose was the carbon source in the control group. The final mean weight of the group weaned with Raftilose  P95 was significantly higher than those observed with the other diets. The bacterial load was highly variable in weaning turbot, especially with respect to the putative Vibrio spp. growing on TCBS agar which, in general, seemed to be dominant. Of the total load of bacterial isolates from turbot weaned on oligofructose, 14% consisted of a strain of Bacillus spp. This strain could use Raftilose  P95 as a single source of carbon, and it might play a role in the beneficial effect of oligofructose on turbot growth, since Bacillus spp. have been documented as probiotics in fish.

Key words

Fish nutrition Fructo-oligosaccharides Intestinal flora Prebiotics Turbot 

References

  1. Austin B. (1983). Bacterial microflora associated with a coastal, marine fish-rearing unit. Journal of Marine Biology Assoc. U.K. 63:585–592CrossRefGoogle Scholar
  2. Baumann P., Baumann L., Mandel M. (1971). Taxonomy of marine bacteria: the genus Beneckea. Journal of Bacteriology 107:268–294PubMedGoogle Scholar
  3. Felsenstein J. (1996). Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. In: Doolittle R.F., (eds) Computer Methods for Macromolecular Sequence Analysis. Methods in Enzymology, vol 266. Academic Press, Orlando FL, pp. 418–427CrossRefGoogle Scholar
  4. Fournier V., Gouillou-Coustans M.F., Métailler R., Vachot C., Ghedes M.J., Tulli F., Oliva-Teles A., Tibaldi E., Kaushik S.J., (2002). Protein requirements for maintenance and nitrogen gain in four teleosts. British Journal of Nutrition 87:459–467CrossRefPubMedGoogle Scholar
  5. Gatesoupe F.J. (1990). The continuous feeding of turbot larvae, Scophthalmus maximus, and control of the bacterial environment of rotifers. Aquaculture 89:139–148CrossRefGoogle Scholar
  6. Gatesoupe F.J. 1993. Bacillus sp. spores as food additive for the rotifer Brachionus plicatilis: Improvement of their bacterial environment and their dietary value for larval turbot, Scophthalmus maximus L. In: Kaushik S.J., Luquet P., (eds) 4th Int. Symp. Fish Nutr Feed. Fish Nutrition in Practice. Institut National de la Recherche Agronomique, Paris, pp. 561–568. Colloq. INRA, no. 61Google Scholar
  7. Gatesoupe F.J. (1999). The use of probiotics in aquaculture: Review. Aquaculture 180:147–165CrossRefGoogle Scholar
  8. Gatesoupe F.J. (2002). Probiotic and formaldehyde treatments of Artemia nauplii as food for larval pollack, Pollachius pollachius. Aquaculture 212:347–360CrossRefGoogle Scholar
  9. Gibson G.R., Probert H.M., Van Loo J., Rastall A.R., Roberfroid M. (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews 17:259–275CrossRefPubMedGoogle Scholar
  10. Hugh R., Leifson E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of Bacteriology 66:24–26PubMedGoogle Scholar
  11. Irianto A., Austin B. (2002). Probitotics in aquaculture. Journal of Fish Diseases 25:633–642CrossRefGoogle Scholar
  12. Kihara M., Sakata T. (2001a). Effects of rearing temperature and dietary on the production of gases and organic acids by gut microbes of an omnivorous Teleost, carp, Cyprinus carpio, in micro-scale batch cultures. Suisanzoshoku 49:329–338Google Scholar
  13. Kihara M., Sakata T. (2001b). Influence of incubation temperature and various saccharides on the production of organic acids and gases by gut microbes of rainbow trout, Onchorhynchus mykiss in a micro-scale batch culture. Journal of Comprehensive Physiology B 171:441–447CrossRefGoogle Scholar
  14. Kihara M., Ohba K., Sakata T. (1995). Trophic effect of dietary lactosucrose on intestinal tunica muscularis and utilization of this sugar by gut microbes in red seabream, Pagrus major, a marine carnivorous teleost, under artificial rearing. Comparative Biochemistry and Physiology. Part A: Physiology 112:629–634CrossRefGoogle Scholar
  15. Montes M., Farto R., Pérez M.J., Nieto T.P., Larsen J.L., Christensen H. (2003). Characterisation of Vibrio strains isolated from turbot (Scophthalmus maximus) cultured by phenotypic analysis, ribotyping and 16S rRNA gene sequence comparison. Journal of Applied Microbiology 95:693–703CrossRefPubMedGoogle Scholar
  16. Moriarty D.J. (1998). Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164:351–358CrossRefGoogle Scholar
  17. Olsen R.E., Myklebust R., Kryvi H., Mayhew T.M., Ringø E. (2001). Damaging effect of dietary inulin on intestinal enterocytes in Arctic charr (Salvelinus alpinus L.). Aquaculture Research 32:931–934CrossRefGoogle Scholar
  18. Queiroz J.F., Boyd C.E. (1998). Effect of bacterial inoculum in channel catfish ponds. Journal of the World Aquaculture Society 29:67–73CrossRefGoogle Scholar
  19. Radjasa O.K., Urakawa H., Kita-Tsukamoto K., Ohwada K. (2001). Characterization of psychrotrophic bacteria in the surface and deep-sea waters from the northwestern Pacific Ocean based on 16S ribosomal DNA analysis. Marine Biotechnology 3:454–462CrossRefPubMedGoogle Scholar
  20. Raida M.K., Larsen J.L., Nielsen M.E., Buchmann K. (2003). Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). Journal of Fish Diseases 26:495–498CrossRefPubMedGoogle Scholar
  21. Rengpipat S., Rukpratanporn S., Piyatiratitivorakul S., Menasaveta P., (2000). Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191:271–288CrossRefGoogle Scholar
  22. Ringø E., Gatesoupe F.J. (1998). Lactic acid bacteria in fish: a review. Aquaculture 160:177–203CrossRefGoogle Scholar
  23. Ringø E., Strøm E., Tabachek J.A. (1995). Intestinal microflora of salmonids: a review. Aquaculture Research 26:773–789CrossRefGoogle Scholar
  24. Sugita H., Hirose Y., Matsuo N., Deguchi Y. (1998). Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish. Aquaculture 165:269–280CrossRefGoogle Scholar
  25. Van Loo J., Cummings J., Delzenne N., Franck A., Hopkins M., MacFarlane G., Newton D., Quigely M., Roberfroid M., Van Vliet T., Van den Heuvel E. (1999). Functional food properties of non-digestible oligosaccharide: a consensus report from the ENDO project (DGXII AIRII-CT94–1095). British Journal of Nutrition 81:121–132PubMedGoogle Scholar
  26. Vaseeharan B., Ramasamy P. (2003). Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp, Penaeus monodon. Letters in Applied Microbiology 36:83–87CrossRefPubMedGoogle Scholar
  27. Venkateswaran K., Hattori N., La Duc M.T., Kern R. (2003). ATP as a biomarker of viable microorganisms in clean-room facilities. Journal of Microbiological Methods 52:367–377CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. S. Mahious
    • 1
  • F. J. Gatesoupe
    • 2
  • M. Hervi
    • 2
  • R. Metailler
    • 2
  • F. Ollevier
    • 1
  1. 1.Laboratory of Aquatic EcologyKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Fish Nutrition Laboratory, Unité Mixte Inra-Ifremer Centre de BrestPlouzanéFrance

Personalised recommendations