Advertisement

The Speciation and Mobility of Mn and Fe in Estuarine Sediments

  • Véronique E. OldhamEmail author
  • Matthew G. Siebecker
  • Matthew R. Jones
  • Alfonso Mucci
  • Bradley M. Tebo
  • George W. LutherIII
Article
  • 57 Downloads

Abstract

Dissolved and solid-phase speciation of Mn and Fe was measured in the porewaters of sediments recovered from three sites in the Greater St. Lawrence Estuary: the Saguenay Fjord, the Lower St. Lawrence Estuary (LSLE) and the Gulf of St. Lawrence (GSL). At all sites and most depths, metal organic ligand complexes (Mn(III)–L and Fe(III)–L) dominated the sedimentary porewater speciation, making up to 100% of the total dissolved Mn or Fe. We propose that these complexes play a previously underestimated role in maintaining oxidized soluble metal species in sedimentary systems and in stabilizing organic matter in the form of soluble metal–organic complexes. In the fjord porewaters, strong (log KCOND > 13.2) and weak (log KCOND < 13.2) Mn(III)–L complexes were detected, whereas only weak Mn(III)–L complexes were detected at the pelagic and hemipelagic sites of the GSL and LSLE, respectively. At the fjord site, Mn(III)–L complexes were kinetically stabilized against reduction by Fe(II), even when Fe(II) concentrations were as high as 57 μM. Only dissolved Mn(II) was released from the sediments to overlying waters, suggesting that Mn(III) may be preferentially oxidized by sedimentary microbes at or near the sediment–water interface. We calculated the dissolved Mn(II) fluxes from the sediments to the overlying waters to be 0.24 µmol cm−2 year−1 at the pelagic site (GSL), 11 µmol cm−2 year−1 at the hemipelagic site (LSLE) and 2.0 µmol cm−2 year−1 in the fjord. The higher benthic flux in the LSLE reflects the lower oxygen concentrations (dO2) of the bottom waters and sediments at this site, which favor the reductive dissolution of Mn oxides as well as the decrease in the oxidation rate of dissolved Mn(II) diffusing through the oxic layer of the sediment and its release to the overlying water.

Keywords

Manganese Iron Sediment Porewaters St. Lawrence Estuary Oxygen Flux Diagenesis Redox chemistry Organic complexation Mn(III)–L Fe(III)–L 

Notes

Acknowledgements

This work was funded by grants from the Chemical Oceanography program of the National Science Foundation (OCE-1558738 and OCE-1155385 to GWL; OCE-1558692 and OCE-1154307 to BMT) and the National Sciences and Engineering Research Council of Canada (NSERC) through Discovery and Ship-time grants to AM. Véronique Oldham thanks the University of Delaware for receipt of a Marian R. Okie Fellowship and a University of Delaware Graduate Fellowship. Thanks also to Gilles Desmeules as well as the captain and crew of the R/V Coriolis II who made sampling for this research possible. Finally, we thank the journal reviewers, including D. Burdige, and the Associate Editor, B. Deflandre for their incisive comments and recommendations.

References

  1. Annane S, St-Amand L, Starr M, Pelletier E, Ferreyra GA (2015) Contribution of transparent exopolymeric particles (TEP) to estuarine particulate organic carbon pool. Mar Ecol Prog Ser 529:17–34CrossRefGoogle Scholar
  2. Anschutz P, Sundby B, Lefrançois L, Luther GWI, Mucci A (2000) Interaction between metal oxides and the cycles of nitrogen and iodine in bioturbated marine sediments. Geochim Cosmochim Acta 64:2751–2763CrossRefGoogle Scholar
  3. Anschutz P, Dedieu K, Desmazes F, Chaillou G (2005) Speciation, oxidation state, and reactivity of particulate manganese in marine sediments. Chem Geol 218:265–279CrossRefGoogle Scholar
  4. Barbeau C, Bougie R, Côté J-E (1981) Variations spatiales et temporelles du cesium-137 et du carbone dans les sédiments du fjord du Saguenay. Can J Earth Sci 18:1004–1011CrossRefGoogle Scholar
  5. Beckler JS, Jones ME, Taillefert M (2015) The origin, composition, and reactivity of dissolved iron(III) complexes in coastal organic- and iron-rich sediments. Geochim Cosmochim Acta 152:72–88CrossRefGoogle Scholar
  6. Bélanger C (2003) Observation and modelling of a renewal event in the Saguenay Fjord. Ph.D. thesis, Université du Québec à Rimouski, Rimouski, QCGoogle Scholar
  7. Belley R, Archambault P, Sundby B, Gilbert F, Gagnon J-M (2010) Effects of hypoxia on benthic macrofauna and bioturbation in the Estuary and Gulf of St. Lawrence, Canada. Cont Shelf Res 30:1302–1313CrossRefGoogle Scholar
  8. Belzile M, Galbraith PS, Bourgault D (2015) Water renewals in the Saguenay Fjord. J Geophys Res 121:638–657CrossRefGoogle Scholar
  9. Benoit P, Gratton Y, Mucci A (2006) Modeling of dissolved oxygen levels in the bottom waters of the Lower St. Lawrence Estuary: coupling of benthic and pelagic processes. Mar Chem 102:13–32CrossRefGoogle Scholar
  10. Boyle EA, Edmond JM, Sholkovitz ER (1977) The mechanism of iron removal in estuaries. Geochim Cosmochim Acta 41:1313–1324CrossRefGoogle Scholar
  11. Brendel PJ, Luther GW (1995) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29:751–761CrossRefGoogle Scholar
  12. Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 11:27–40CrossRefGoogle Scholar
  13. Chaillou G, Schafer J, Anschutz P, Lavaux G, Blanc G (2003) The behaviour of arsenic in muddy sediments of the bay of Biscay (France). Geochim Cosmochim Acta 67:2993–3003CrossRefGoogle Scholar
  14. Chen Q, Mucci A, Sundby B, Minarik W (2012) Early diagenesis of redox-sensitive elements in the Estuary and Gulf of St. Lawrence. Contributed poster presentation, 22st V.M. Goldschmidt Conference, June 24–29, Montréal, Canada. Mineralogical Mag 76:1568Google Scholar
  15. Chester R, Hughes MJ (1967) A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem Geol 2:249–262CrossRefGoogle Scholar
  16. Davies SHR, Morgan JJ (1989) Manganese(II) oxidation kinetics on metal oxide surfaces. J Colloid Interface Sci 129:63–77CrossRefGoogle Scholar
  17. Dellwig O, Schnetger B, Brumsack H, Grossart H, Umlauf L (2012) Dissolved reactive manganese at pelagic redoxclines (part II): hydrodynamic conditions for accumulation. J Mar Syst 90:31–41CrossRefGoogle Scholar
  18. Dickie L, Trites RW (1983) The Gulf of St. Lawrence. In: Dickie L, Trites RW (eds) Estuaries and semi-enclosed seas. Elsevier Scientific Publication, Amsterdam, pp 403–425Google Scholar
  19. Duckworth OW, Sposito G (2005) Siderophore-manganese(III) interactions I. Manganite dissolution promoted by desferrioxamine-B. Environ Sci Technol 39:6045–6051CrossRefGoogle Scholar
  20. Duckworth OW, Sposito G (2007) Siderophore-promoted dissolution of synthetic and biogenic layer type Mn oxides. Chem Geol 242:497–508CrossRefGoogle Scholar
  21. Edenborn HM, Mucci A, Belzile N, Lebel J, Silverberg N, Sundby B (1986) A glove box for the fine scale subsampling of sediment box cores. Sedimentology 33:147–150CrossRefGoogle Scholar
  22. El-Sahb MI, Silverberg N (1990) The St. Lawrence Estuary: introduction. In: El-Sabh MI, Silverberg N (eds) Oceanography of a large-scale estuarine system. Springer, New York, pp 1–9Google Scholar
  23. Ferdelman G (1988) The distribution of sulfur, iron, manganese, copper, and uranium in a salt marsh sediment core as determined by a sequential extraction method. M.Sc. thesis, University of DelawareGoogle Scholar
  24. Fortin GR, Pelletier M (1995) Synthèse des connaissances sur les aspects physiques et chimiques de l’eau et des sédiments du Saguenay. Environnement Canada, région du Québec, Conservation de l’environnement, Centre Saint-Laurent, Technical reportGoogle Scholar
  25. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic, suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090CrossRefGoogle Scholar
  26. Gagnon C, Mucci A, Pelletier E (1995) Anomalous accumulation of acid-volatile sulphides in a coastal marine sediment (Saguenay Fjord, Canada). Geochim Cosmochim Acta 59:2663–2675CrossRefGoogle Scholar
  27. Gaillard J-F, Pauwels H, Michard G (1989) Chemical diagenesis in coastal marine sediments. Oceanol Acta 12:175–187Google Scholar
  28. Genovesi L, de Vernal A, Thibodeau B, Hillaire-Marcel C, Mucci A, Gilbert D (2011) Recent changes in bottom water oxygenation and temperature in the Gulf of St. Lawrence: micropaleontological and geochemical evidence. Limnol Oceanogr 56:1319–1329CrossRefGoogle Scholar
  29. Gilbert D, Gobeil C, Sundby B, Mucci A, Tremblay GH (2005) A seventy-two year record of diminishing deep-water oxygen levels in the St. Lawrence estuary: the northwest Atlantic connection. Limnol Oceanogr 50:1654–1666CrossRefGoogle Scholar
  30. Gratton Y, Mertz G, Gagné JA (1988) Satellite observations of tidal upwelling and mixing in the St. Lawrence Estuary. J Geophys Res 93(C6):6947–6954CrossRefGoogle Scholar
  31. Gratton Y, Lefaivre D, Couture M (1994) Océanographie physique du fjord du Saguenay. Le fjord du Saguenay: Un Milieu Exceptionnel de Recherche, J.-M. Sévigny and C. M. Couillard, Eds., Ministère des Pêches et des Océans, Institut Maurice-Lamontagne, pp 8–16Google Scholar
  32. Hansard SP, Easter HD, Voelker BM (2011) Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater. Environ Sci Technol 45:2811–2817CrossRefGoogle Scholar
  33. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115CrossRefGoogle Scholar
  34. Hyacinthe C, Bonneville S, Van Cappellen P (2006) Reactive iron(III) in sediments: chemical versus microbial extractions. Geochim Cosmochim Acta 70:4166–4180CrossRefGoogle Scholar
  35. Katsev S, Chaillou G, Sundby B, Mucci A (2007) Effects of progressive oxygen depletion on sediment diagenesis and fluxes: a model for the lower St. Lawrence River Estuary. Limnol Oceanogr 52:2555–2568CrossRefGoogle Scholar
  36. Kostka J, Luther GW (1994) Partitioning and speciation of solid phase iron in salt-marsh sediments. Geochim Cosmochim Acta 58:1701–1710CrossRefGoogle Scholar
  37. Learman DR, Voelker BM, Vazquez-Rodrigues AI, Hansel CM (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4:95–98CrossRefGoogle Scholar
  38. Lefort S (2012) Multidisciplinary study of hypoxia in the deep water of the Estuary and Gulf of St. Lawrence: is this ecosystem on borrowed time? Ph.D. thesis, McGill UniversityGoogle Scholar
  39. Lefort S, Mucci A, Sundby B (2012) Sediment response to 25 years of persistent hypoxia. Aquat Geochem 18:461–474CrossRefGoogle Scholar
  40. Leventhal J, Taylor C (1990) Comparison of methods to determine degree of pyritization. Geochim Cosmochim Acta 54:2621–2625CrossRefGoogle Scholar
  41. Lin H, Szeinbaum NH, DiChristina TJ, Taillefert M (2012) Microbial Mn(IV) reduction requires an initial one-electron reductive solubilization step. Geochim Cosmochim Acta 99:179–192CrossRefGoogle Scholar
  42. Locat J, Levesque C (2009) Le Fjord du Saguenay: Une physiographie et un registre exceptionnel. Rev Sci Eau 22:135–157Google Scholar
  43. Luther GW (2010) The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquat Geochem 16:395–420CrossRefGoogle Scholar
  44. Luther GW, Kostka JE, Church TM, Sulzberger B, Stumm W (1992) Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar Chem 40:81–103CrossRefGoogle Scholar
  45. Luther GWI, Shellenbarger PA, Brendel PJ (1996) Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters. Geochim Cosmochim Acta 60:951–960CrossRefGoogle Scholar
  46. Luther GW, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochim Cosmochim Acta 61:4043–4052CrossRefGoogle Scholar
  47. Luther GW, Glazer BT, Ma S, Trouwborst RE, Moore TS, Metzger E, Kraiya C, Waite TJ, Druschel G, Sundby B, Taillefert M, Nuzzio DB, Shank TM, Lewis BL, Brendel PJ (2008) Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar Chem 108:221–235CrossRefGoogle Scholar
  48. Luther GW III, Madison AS, Mucci A, Sundby B, Oldham VE (2015) A kinetic approach to assess the strengths of ligands bound to soluble Mn(III). Mar Chem 173:93–99CrossRefGoogle Scholar
  49. Luther GW, Thibault de Chanvalon A, Oldham VE, Estes EE, Tebo BM, Madison AS (2018) Reduction of manganese oxides: thermodynamic, kinetic and mechanistic considerations for one- versus two-electron transfer steps. Aquat Geochem 24:257–277.  https://doi.org/10.1007/s10498-018-9342-1 CrossRefGoogle Scholar
  50. Madison AS, Tebo BM, Luther GW (2011) Simultaneous determination of soluble manganese(III), manganese(II) and total manganese in natural (pore)waters. Talanta 84:374–381CrossRefGoogle Scholar
  51. Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW III (2013) Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341:875–878CrossRefGoogle Scholar
  52. Mucci A (2004) The behavior of mixed Ca–Mn carbonates in water and seawater: controls of manganese concentrations in marine porewaters. Aquat Geochem 10:139–169CrossRefGoogle Scholar
  53. Mucci A, Richard L-F, Lucotte M, Guignard C (2000) The differential geochemical behavior of arsenic and phosphorus in the water column and sediments of the Saguenay Fjord Estuary, Canada. Aquat Geochem 6:293–324CrossRefGoogle Scholar
  54. Mucci A, Boudreau B, Guignard C (2003) Diagenetic mobility of trace elements in sediments covered by a flash flood deposit: Mn, Fe and As. Appl Geochem 18:1011–1026CrossRefGoogle Scholar
  55. Oldham VE, Owings SM, Jones M, Tebo BM, Luther GW (2015) Evidence for the presence of strong Mn(III)-binding ligands in the water column of the Chesapeake Bay. Mar Chem 171:58–66CrossRefGoogle Scholar
  56. Oldham VE, Mucci A, Tebo BM, Luther GW (2017a) Soluble Mn(III)-L complexes are abundant in oxygenated waters and stabilized by humic ligands. Geochim Cosmochim Acta 199:238–246CrossRefGoogle Scholar
  57. Oldham VE, Miller MT, Jensen LT, Luther GW (2017b) Revisiting Mn and Fe removal in humic rich estuaries. Geochim Cosmochim Acta 209:267–283CrossRefGoogle Scholar
  58. Oldham VE, Tebo BM, Jones MR, Luther GW (2017c) Oxidative and reductive processes contributing to manganese cycling at oxic-anoxic interfaces. Mar Chem 195:122–128CrossRefGoogle Scholar
  59. Parker D, Sposito G, Tebo BM (2004) Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium. Geochim Cosmochim Acta 68:4809–4820CrossRefGoogle Scholar
  60. Parker DL, Morita T, Mozafarzadeh ML, Verity R, McCarthy JK, Tebo BM (2007) Inter-relationships of MnO2 precipitation, siderophore-Mn(III) complex formation, siderophore degradation, and iron limitation in Mn(II) oxidizing bacterial cultures. Geochim Cosmochim Acta 71:5672–5683CrossRefGoogle Scholar
  61. Raiswell R, Canfield DE, Berner RA (1994) A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chem Geol 111:101–110CrossRefGoogle Scholar
  62. Reeburgh WS (1967) An improved interstitial water sampler. Limnol Oceanogr 12:163–165CrossRefGoogle Scholar
  63. Schafer CT, Smith JN, Côté R (1990) The Saguenay Fjord: a major tributary to the St. Lawrence Estuary. In: El-Sabh MI, Silverberg N (eds) Oceanography of a large-scale estuarine system: The St. Lawrence, vol 39. Springer, New York, pp 378–420CrossRefGoogle Scholar
  64. Schulz HD (2000) Quantification of early diagenesis: dissolved constituents in marine porewaters. In: Shulz HD, Zabel M (eds) Marine geochemistry. Springer, BerlinCrossRefGoogle Scholar
  65. Silverberg N, Sundby B (1990) Sediment-water interaction and early diagenesis in the Laurentian Trough. In: El-Sabh MI, Silverberg N (eds) Oceanography of a large-scale estuarine system: The St. Lawrence, vol 39. Springer, New York, pp 202–238CrossRefGoogle Scholar
  66. Silverberg N, Bakker J, Edenborn HM, Sundby B (1987) Oxygen profiles and organic carbon fluxes in Laurentian Trough sediments. Neth J Sea Res 21:95–105CrossRefGoogle Scholar
  67. Smith JN, Schafer CT (1999) Sedimentation, bioturbation, and Hg uptake in the sediments of the estuary and Gulf of St. Lawrence. Limnol Oceanogr 44:207–219CrossRefGoogle Scholar
  68. Smith JN, Walton A (1980) Sediment accumulation rates and geochronologies measured in the Saguenay Fjord using the Pb-210 dating method. Geochim Cosmochim Acta 44:225–240CrossRefGoogle Scholar
  69. Stacey MW, Gratton Y (2001) The energetics and tidally induced reverse renewal in a two-silled fjord. J Phys Oceanogr 31:1599–1615CrossRefGoogle Scholar
  70. Stookey LL (1970) Ferrozine. A new spectrophotometric reagent for iron. Anal Chem 42:770–781CrossRefGoogle Scholar
  71. Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley-Interscience, New York, p 1022Google Scholar
  72. Sundby B (1977) Manganese-rich particulate matter in a coastal marine environment. Nature 270:417–419CrossRefGoogle Scholar
  73. Sundby B, Silverberg N, Chesselet R (1981) Pathways of manganese in an open estuarine system. Geochim Cosmochim Acta 45:293–307CrossRefGoogle Scholar
  74. Taillefert M, Bono AB, Luther GW (2000) Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: voltammetric evidence of an aging process. Environ Sci Technol 34:2169–2177CrossRefGoogle Scholar
  75. Taillefert M, Rozan TF, Glazer BT, Herszage J, Trouwborst RE, Luther WG III (2002) Seasonal variations of soluble organic-Fe(III) in sediment porewaters as revealed by voltammetric microelectrodes. In: Taillefert M, Rozan T (eds) Environmental electrochemistry: analyses of trace element biogeochemistry. American Chemical Society Symposium Series, Chapt 13, vol 811. American Chemical Society, Washington, DC, pp 247–264.  https://doi.org/10.1021/bk-2002-0811.ch013 CrossRefGoogle Scholar
  76. Tebo BM, Ghiorse WC, vanWaasbergen LG, Siering PI, Caspi R (1997) Review in mineralogy. Miner Soc Am 35:225–266Google Scholar
  77. Tebo BM, Johnson HA, McCarthy JK, Templeto AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428CrossRefGoogle Scholar
  78. Thibodeau B, de Vernal A, Mucci A (2006) Recent eutrophication and consequent hypoxia in the bottom waters of the Lower St. Lawrence Estuary: micropaleontological and geochemical evidence. Mar Geol 231:37–50CrossRefGoogle Scholar
  79. Tremblay L, Gagné J-P (2007) Distribution and biogeochemistry of sedimentary humic substances in the St. Lawrence Estuary and the Saguenay Fjord, Québec. Org Geochem 38:682–699CrossRefGoogle Scholar
  80. Trouwborst RE, Clement B, Tebo BM, Glazer BT, Luther GW III (2006) Soluble Mn(III) in suboxic zones. Science 313:1955–1957CrossRefGoogle Scholar
  81. Van Cappellen P, Wang Y (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Am J Sci 296:197–243CrossRefGoogle Scholar
  82. van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157CrossRefGoogle Scholar
  83. Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) inermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci USA 102:5558–5563CrossRefGoogle Scholar
  84. Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem 107:388–410CrossRefGoogle Scholar
  85. Yakushev E, Pakhomova S, Sørenson K, Skei J (2009) Importance of the different manganese species in the formation of water column redox zones: observations and modeling. Mar Chem 117:59–70CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Marine Science and PolicyUniversity of DelawareLewesUSA
  2. 2.Division of Environmental and Biomolecular Systems, Institute of Environmental HealthOregon Health and Science UniversityPortlandUSA
  3. 3.GEOTOP and Department of Earth and Planetary SciencesMcGill UniversityMontrealCanada
  4. 4.Department of Marine Chemistry and GeochemistryWoods Hole Oceanographic InstituteWoods HoleUSA
  5. 5.Division of Environmental Science and EngineeringPOSTECH – Pohang University of Science and TechnologyPohang-siKorea
  6. 6.Department of Plant and Soil ScienceTexas Tech UniversityLubbockUSA

Personalised recommendations