Advertisement

Aquatic Geochemistry

, Volume 24, Issue 4, pp 279–306 | Cite as

Uranium and Multi-element Release from Orthogneiss and Granite (Austria): Experimental Approach Versus Groundwater Composition

  • Daniel Elster
  • Edith Haslinger
  • Martin Dietzel
  • Heinz Fröschl
  • Gerhard Schubert
Article

Abstract

In this study, the release of elements and in particular U from five Austrian orthogneiss and granite samples into a CO2-bearing solution was investigated to describe the initial phase (24 h) of leaching focusing on the impact of ferrous (hydro)oxide formation. Experiments were conducted at ambient temperature by flushing CO2:N2 gas through the reactive solution (pHinitial ~ 4.3) at a liquid:solid ratio of 10:1 with and without a reducing agent. The chemical evolution of the leaching solution was dominated by incongruent dissolution of silicates showing a parabolic kinetic behavior due to protective surface formation most likely caused by precipitation of amorphous FeIII/Al hydroxides. However, the relative distribution of Ca, Mg and Sr in the leaching solution excellently traced the individual bulk rock composition. The mobilization of U was highly prevented under oxidizing conditions by sorption onto ferrous (hydro)oxides, which were precipitating through ongoing silicate leaching. Therefore, the leaching behavior of individual U-bearing minerals was less relevant for U release. At reducing conditions, the above elements were accumulated in the solution, although an oversaturation regarding UIVO2 was calculated. This indicates its inhibited formation within the experimental run time. The composition of experimental leaching solutions did not reflect analyzed groundwater compositions from investigated local rock-type aquifers indicating that reaction rate constants of siliceous rocks significantly differ between values found in nature and in the laboratory. Change in active mineral surface areas with ongoing weathering, accumulation of secondary precipitates, leached layer formation and given reaction time are key factors for distinct elemental release.

Keywords

Uranium Granitoid rocks Water–rock interaction Leaching 

Notes

Acknowledgements

Funding of this study was provided through a PhD program from the Austrian Institute of Technology. We would like to thank the personnel involved in analytics from the following institutions: Seibersdorf Labor GmbH (hydrochemical analyses and rock chemistry analyses), Austrian Institute of Technology, Geological Survey of Austria - Department of Geochemistry and Department of Hydrogeology and Geothermics (REM analyses, XRF-analyses, heavy liquid separation, radon and hydrochemical analysis), University of Salzburg - Department of Chemistry and Physics of Materials (REM analyses) and Graz University of Technology - Institute of Technology and Testing of Building Materials (BET analyses).

References

  1. Acker JG, Bricker OP (1992) The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochim Cosmochim Acta 56:3073–3092CrossRefGoogle Scholar
  2. Alam MS, Cheng T (2014) Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms. J Contam Hydrol 164:72–87CrossRefGoogle Scholar
  3. Appelo CAJ, Postma D (2005) Geochemistry. Groundwater and Pollution. AA Balkema Publishers, AmsterdamCrossRefGoogle Scholar
  4. Austrian Water Quality Regulation (2012) BGBl. II 359/2012. https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2012_II_359/BGBLA_2012_II_359.pdf. Accessed 25 Mar 2018
  5. Barnett MO, Jardine PM, Brooks SC (2002) U(VI) adsorption to heterogeneous subsurface media. Application of a surface complexation model. Environ Sci Technol 36:937–942CrossRefGoogle Scholar
  6. Berka R, Katzelsberger C, Philippitsch R, Schubert G, Korner M, Landstetter C, Motschka K, Pirkl H, Grath J, Draxler A, Hörhan T (2014) Erläuterungen zur Geologischen Themenkarte Radionuklide in Grundwässern, Gesteinen und Bachsedimenten Österreichs 1:500 000. Geological Survey of Austria, ViennaGoogle Scholar
  7. Berner RA (1981) Kinetics of weathering and diagenesis. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Reviews in mineralogy, vol 8, pp 111–133Google Scholar
  8. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3(aq.) species. Radiochim Acta 89:511–518CrossRefGoogle Scholar
  9. Brantley SL, Kubicki JD, White AF (2008) Kinetics of water–rock interactions. Springer, New YorkCrossRefGoogle Scholar
  10. Bunzl K, Schmidt W, Sansoni B (1976) Kinetics of ion exchange in soil organic matter. IV Adsorption and desorption of Pb2+. Cu2+. Cd2+. Zn2+ and Ca2+ by peat. J Soil Sci 17:32–41CrossRefGoogle Scholar
  11. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 7:173–174Google Scholar
  12. Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modelling of uranium(VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68:3621–3641CrossRefGoogle Scholar
  13. Declercq J, Oelkers EH (2014) CarbFix report. PHREEQC mineral dissolution kinetics database. Geoscience Environment Toulouse, ToulouseGoogle Scholar
  14. Desbarats AJ, Percival JB, Venance KE (2016) Trace element mobility in mine waters from granitic pegmatite U-Th–REE deposits. Bancroft area. Ontario. Appl Geochem 67:153–167CrossRefGoogle Scholar
  15. DIN 19529:2015–12 Leaching of solid materials. Batch test for the examination of the leaching behaviour of inorganic and organic substances at a liquid to solid ratio of 2 l/kgGoogle Scholar
  16. Dittrich TM, Reimus PW (2015) Uranium transport in a crushed granodiorite: experiments and reactive transport modelling. J Contam Hydrol 175–176:44–59CrossRefGoogle Scholar
  17. Dong W, Brooks SC (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+. Ca2+. Sr2+ and Ba2+) using anion exchange method. Environ Sci Technol 40:4689–4695CrossRefGoogle Scholar
  18. Duff MC, Hunter DB, Bertsch PM, Amrhein C (1999) Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochemistry 45:95–114Google Scholar
  19. Eyal Y, Olander DR (1990) Leaching of uranium and thorium from monazite: I. Initial leaching. Geochim Cosmochim Acta 54:1867–1877CrossRefGoogle Scholar
  20. Finch RJ, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns CB, Finch R (eds) Uranium: mineralogy, geochemistry and the environment. Reviews in mineralogy, vol 38, pp 91–181Google Scholar
  21. Finger F, Schubert G (2015) Die Böhmische Masse in Österreich: was gibt es Neues? Abhandlungen der Geologischen Bundesanstalt 64:167–179Google Scholar
  22. Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387CrossRefGoogle Scholar
  23. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  24. Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement—the South Bohemian Batholith. J Czech Geol Soc 48:53–54Google Scholar
  25. Grenthe I (2006) Uranium. In: Morss LR (ed) The chemistry of actinide and transactinide elements. Springer, Dordrecht, pp 253–698CrossRefGoogle Scholar
  26. Haunschmid B (1993) Zentralgneisgenerationen im östlichen Tauernfenster. Dissertation, University of SalzburgGoogle Scholar
  27. House WA, Orr DR (1992) Investigation of the pH dependence of the kinetics of quartz dissolution at 25 °C. J Chem Soc Faraday Trans 88:233–241CrossRefGoogle Scholar
  28. Karpas Z (2015) Analytical chemistry of uranium. Environmental. Forensic. Nuclear and toxicological applications. CRC Press, Boca RatonGoogle Scholar
  29. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, OxfordGoogle Scholar
  30. Manley EP, Evans LJ (1986) Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. J Soil Sci 141:106–112CrossRefGoogle Scholar
  31. Merkel BJ, Planer-Friedrich B (2008) Grundwasserchemie. Springer, BerlinGoogle Scholar
  32. Mielke P, Winkler HGF (1979) Eine bessere Berechnung der Mesonorm für granitische Gesteine. Neu Jb Mineral Mh 10:471–480Google Scholar
  33. Milnes AG (1974) Structure of the Pennine Zone (Central Alps): a new working hypothesis. Geol Soc Am Bull 85:1727–1732CrossRefGoogle Scholar
  34. Nair S, Merkel BJ (2015) Sorption of U(VI) and As(V) on SiO2. Al2O3. TiO2 and FeOOH: a column experiment study. In: Merkel JM, Arab A (eds) Uranium—past and future challenges. Springer, Berlin, pp 259–270Google Scholar
  35. Noubactep C, Sonnefeld J, Merten D, Heinrichs T, Sauter M (2006) Effects of the presence of pyrite and carbonate minerals on the kinetics of uranium release from a natural rock. J Radioanal Nucl Chem 270:325–333CrossRefGoogle Scholar
  36. Noubactep C, Schöner A, Schubert M (2008) Characterizing As Cu.Fe and U solubilization by natural waters. In: Merkel JM, Hasche-Berger AH (eds) Uranium. Mining and hydrogeology. Springer, Berlin, pp 549–559CrossRefGoogle Scholar
  37. Pestal G, Hejl E, Braunstingl R, Schuster R, Draxler I, Egger H, Heinrich M, Lenhardt WA, Letouze-Zezula G, Linner M, Mandl GW, Moshammer B, Rupp C, Schedl A, Van Husen D, Wimmer-Frey I, Valentin G (2009) Geologische Karte von Salzburg 1:200 000: Erläuterungen. Verlag der Geologischen Bundesanstalt, ViennaGoogle Scholar
  38. Puigdomenech I, Casas I, Bruno J (1990) Kinetics of UO2(s) dissolution under reducing conditions: numerical modelling. Swedish Nuclear Fuel Waste Management Co, SKB Technical Report, StockholmGoogle Scholar
  39. Sachs S, Geipel G, Bernhard G (2006) Impact of humic acid on the uranium migration in the environment. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, Berlin, pp 107–116CrossRefGoogle Scholar
  40. Schönlaub HP, Schuster R (2015) Die zweigeteilten Karawanken und ihre erdgeschichtliche Entwicklung. Naturwissenschaftlicher Verein für Kärnten, KlagenfurtGoogle Scholar
  41. Waite TD, Davis JA, Payne TE, Waychunas GA, Xi N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation. Geochim Cosmochim Acta 58:5465–5478CrossRefGoogle Scholar
  42. Wemhöner U, Humer F, Schubert G, Berka R, Philippitsch R, Hörhan T (2015) Uran im Grundwasser. Austrian Federal Ministry of Agriculture Forestry Environment and Water Management, ViennaGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Center for Energy, Electric Energy SystemsAustrian Institute of Technology GmbHViennaAustria
  2. 2.Institute of Applied GeosciencesGraz University of TechnologyGrazAustria
  3. 3.Department of Hydrogeology and Geothermal EnergyGeological Survey of AustriaViennaAustria
  4. 4.Seibersdorf Labor GmbHSeibersdorfAustria

Personalised recommendations