Advertisement

Aquatic Geochemistry

, Volume 21, Issue 6, pp 459–485 | Cite as

Dissolution Rates of Biogenic Carbonates in Natural Seawater at Different pCO2 Conditions: A Laboratory Study

  • Mallory PickettEmail author
  • Andreas J. Andersson
Original Paper

Abstract

The bulk dissolution rates of six biogenic carbonates (goose barnacle, benthic foraminifera, bryozoan, sea urchin, and two types of coralline algae) and a sample of mixed sediment from the Bermuda carbonate platform were measured in natural seawater at pCO2 values ranging from approximately 3000 to 5500 μatm. This range of pCO2 values encompassed values regularly observed in porewaters at a depth of a few cm in carbonate sediments at shallow water depths (<15 m) on the Bermuda carbonate platform. The biogenic carbonates included calcites of varying Mg content (2–17 mol%) and a range of specific surface areas (0.01–2.7 m2 g−1) as determined by BET gas adsorption. Measured rates of dissolution increased with increasing pCO2 treatment for all substrates and ranged from 2.5 to 18 μmol g−1 h−1. The highest rates of dissolution were observed for the bryozoans and the lowest rates for the goose barnacles. The relative ranking in dissolution rates between different substrates was consistent at all pCO2 levels, indicating that substrates dissolve sequentially and that some substrates will be more vulnerable than others to rising CO2 and ocean acidification. Furthermore, dissolution rates were found to increase with increasing Mg content, though the relative dissolution rates were observed to be a function of both Mg content and microstructure (surface area).

Keywords

CaCO3 dissolution Mg-calcite Biogenic Carbonate Ocean acidification CO2 

Notes

Acknowledgments

A.J.A gratefully acknowledges support from NSF Grants OCE 09-28406 and OCE 12-55042 and NOAA Grant NA10AR4310094. We are also grateful for the excellent comments provided by two anonymous reviewers, which significantly helped to improve an early version of this manuscript.

References

  1. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348CrossRefGoogle Scholar
  2. Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or sink of atmospheric CO2? Front Ecol Environ 2:348–353Google Scholar
  3. Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516CrossRefGoogle Scholar
  4. Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305:875–918CrossRefGoogle Scholar
  5. Andersson AJ, Bates NR, Mackenzie FT (2007) Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole, Bermuda. Aquat Geochem 13:237–264CrossRefGoogle Scholar
  6. Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273CrossRefGoogle Scholar
  7. Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823Google Scholar
  8. Andersson AJ, Mackenzie FT, Gattuso J-P (2011) Effects of ocean acidification on benthic processes, organisms, and ecosystems. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 122–153Google Scholar
  9. Arakaki T, Mucci A (1995) A continuous and mechanistic representation of calcite reaction-controlled kinetics in dilute solutions at 25 C and 1 atm total pressure. Aquat Geochem 1:105–130CrossRefGoogle Scholar
  10. Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263CrossRefGoogle Scholar
  11. Archer D, Emerson S, Reimers C (1989) Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochim Cosmochim Acta 53:2831–2845CrossRefGoogle Scholar
  12. Bischoff WD, Bishop FC, Mackenzie FT (1983) Biogenically produced magnesian calcite; inhomogeneities in chemical and physical properties; comparison with synthetic phases. Am Mineral 68:1183–1188Google Scholar
  13. Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51:1413–1423CrossRefGoogle Scholar
  14. Bischoff WD, Bertram MA, Mackenzie FT, Bishop FC (1993) Diagenetic stabilization pathways of magnesian calcites. Carbonates Evaporites 8:82–89CrossRefGoogle Scholar
  15. Bockmon E, Dickson AG (2014) A seawater filtration method suitable for total dissolved inorganic carbon and pH analyses. Limnol Oceanogr Methods 12:191–195Google Scholar
  16. Broecker WS, Broecker S (1974) Carbonate dissolution on the western flank of the East Pacific Rise. Studies in Paleoceanography, Spec. Publ. Soc. Econ. Paleontol. Mineral., 20W. W. Hay, 44–57Google Scholar
  17. Busenberg E, Plummer LN (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. Stud Diagenesis 105:139–168Google Scholar
  18. Busenberg E, Plummer LN (1989) Thermodynamics of magnesian calcite solid-solutions at 25 C and 1 atm total pressure. Geochim Cosmochim Acta 53:1189–1208CrossRefGoogle Scholar
  19. Chan N, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Change Biol 19:282–290CrossRefGoogle Scholar
  20. Chave KE, Schmalz RF (1966) Carbonate–seawater interactions. Geochim Cosmochim Acta 30:1037–1048CrossRefGoogle Scholar
  21. Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282CrossRefGoogle Scholar
  22. Comeau S, Carpenter RC, Lantz C, Edmunds PJ (2015) Ocean acidification accelerates dissolution of experimental coral reef communities. Biogeosciences 12:365–372CrossRefGoogle Scholar
  23. Cubillas P, Köhler S, Prieto M et al (2005) Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem Geol 216:59–77CrossRefGoogle Scholar
  24. Cyronak T, Santos I, Eyre B (2013) Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophys Res Lett 40:4876–4881CrossRefGoogle Scholar
  25. de Kanel J, Morse JW (1979) A simple technique for surface area determination. J Phys E Sci Instr 12:272CrossRefGoogle Scholar
  26. Dickson AG (1993) pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep Sea Res 40:107–118CrossRefGoogle Scholar
  27. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743CrossRefGoogle Scholar
  28. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization, Sidney, PICES special publication 3:191Google Scholar
  29. Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky S, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science + Business Media B. V., Dordrecht, pp 151–5 176Google Scholar
  30. Eyre B, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Change 4:969–976CrossRefGoogle Scholar
  31. Friedman GM (1964) Early diagenesis and lithification in carbonate sediments. J Sediment Res 34:1307–1314Google Scholar
  32. Gehlen M, Bassinot FC, Chou L, McCorkle D (2005) Reassessing the dissolution of marine carbonates: II. Reaction kinetics. Deep Sea Res Oceanogr Res Pap 52:1461–1476CrossRefGoogle Scholar
  33. Goldsmith JR, Graf DL, Heard HC (1961) Lattice constants of the calcium-magnesium carbonates. Am Mineral 46:453–457Google Scholar
  34. Hales B, Emerson S (1997) Evidence in support of first-order dissolution kinetics of calcite in seawater. Earth Planet Sci Lett 148:317–327CrossRefGoogle Scholar
  35. Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefGoogle Scholar
  36. Hofmann GE, Barry JP, Edmunds PJ et al (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147CrossRefGoogle Scholar
  37. Hubbard DK, Burke RB, Gill IP (1998) Where’s the reef: the role of framework in the Holocene. Carbonates Evaporites 13:3–9CrossRefGoogle Scholar
  38. Jahnke RA, Jahnke DB (2004) Calcium carbonate dissolution in deep sea sediments: reconciling microelectrode, pore water and benthic flux chamber results. Geochim Cosmochim Acta 68:47–59CrossRefGoogle Scholar
  39. Keir RS (1980) The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim Cosmochim Acta 44:241–252CrossRefGoogle Scholar
  40. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07Google Scholar
  41. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. In: ORNL/CDIAC-105 (ed) Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak RidgeGoogle Scholar
  42. Mackenzie FT, Bischoff WD, Bishop FC, Loijens M, Schoonmaker J, Wollast R (1983) Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Reviews in Mineralogy, vol 11. Mineralogical Society of America, Washington, pp 97–143Google Scholar
  43. Mehrbach C, Culberso CH, Hawley JE, Pytkowic RM (1973) Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  44. Morse JW (1974a) Dissolution kinetics of calcium carbonate in sea water; III, a new method for the study of carbonate reaction kinetics. Am J Sci 274:97–107CrossRefGoogle Scholar
  45. Morse JW (1974b) Dissolution kinetics of calcium carbonate in sea water; V, effects of natural inhibitors and the position of the chemical lysocline. Am J Sci 274:638–647CrossRefGoogle Scholar
  46. Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84CrossRefGoogle Scholar
  47. Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830CrossRefGoogle Scholar
  48. Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381CrossRefGoogle Scholar
  49. Müller M, Schulz K, Riebesell U (2010) Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosci BG 7:1109–1116CrossRefGoogle Scholar
  50. Nash MC, Opdyke BN, Wu Z et al (2013) Simple X-ray diffraction techniques to identify Mg calcite, dolomite, and magnesite in tropical coralline algae and assess peak asymmetry. J Sediment Res 83:1085–1099Google Scholar
  51. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefGoogle Scholar
  52. Plummer LN, Mackenzie FT (1974) Predicting mineral solubility from rate data; application to the dissolution of magnesian calcites. Am J Sci 274:61–83CrossRefGoogle Scholar
  53. Plummer LN, Wigley TML (1976) The dissolution of calcite in CO2-saturated solutions at 25 °C and 1 atmosphere total pressure. Geochim Cosmochim Acta 40:191–202CrossRefGoogle Scholar
  54. Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2–water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO2. Am J Sci 278:179–216CrossRefGoogle Scholar
  55. Rickard D, Sjoeberg EL (1983) Mixed kinetic control of calcite dissolution rates. Am J Sci 283:815–830CrossRefGoogle Scholar
  56. Riebesell U, Zondervan I, Rost B et al (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefGoogle Scholar
  57. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134CrossRefGoogle Scholar
  58. Schott J, Brantley S, Crerar D et al (1989) Dissolution kinetics of strained calcite. Geochim Cosmochim Acta 53:373–382CrossRefGoogle Scholar
  59. Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res Oceans 1978–2012(112):C05004Google Scholar
  60. Silverman J, Lazar B, Cao L et al (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:LO5606CrossRefGoogle Scholar
  61. Sjöberg EL (1976) A fundamental equation for calcite dissolution kinetics. Geochim Cosmochim Acta 40:441–447CrossRefGoogle Scholar
  62. Svensson U, Dreybrodt W (1992) Dissolution kinetics of natural calcite minerals in CO2–water systems approaching calcite equilibrium. Chem Geol 100:129–145CrossRefGoogle Scholar
  63. Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Glob Biogeochem Cycles 23:GB3008CrossRefGoogle Scholar
  64. Walter LM, Morse JW (1984) Reactive surface area of skeletal carbonates during dissolution: effect of grain size. J Sediment Res 54:1081–1090Google Scholar
  65. Walter LM, Morse JW (1985) The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim Cosmochim Acta 49:1503–1513CrossRefGoogle Scholar
  66. Woosley RJ, Millero FJ, Grosell M (2012) The solubility of fish-produced high magnesium calcite in seawater. J Geophys Sci 117:C1048Google Scholar
  67. Yamamoto S, Kayanne H, Terai M et al (2012) Threshold of carbonate saturation state determined by CO2 control experiment. Biogeosciences 9:1441–1450CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA

Personalised recommendations