Aquatic Geochemistry

, Volume 21, Issue 2–4, pp 231–257 | Cite as

Metals in the Aquatic Environment—Interactions and Implications for the Speciation and Bioavailability: A Critical Overview

  • Rute F. Domingos
  • Alexandre Gélabert
  • Sara Carreira
  • Ana Cordeiro
  • Yann Sivry
  • Marc F. Benedetti
Original Paper

Abstract

In most case scenarios, individual metals exist as components in mixtures with organic and inorganic substances and/or particulate matter. While the concepts encompassing mixture toxicity and modeling have been around for decades, only recently have new approaches (dynamic speciation techniques and fate and bioavailability models) been expanded to consider metal mixture scenarios. For example, the kinetic features of humic substances and inorganic colloids on the complexation of metals are generally considered. Although current environmental regulations rarely require an assessment of chemicals mixtures, research on these mixtures in the environment is essential for future regulatory demands and is vital for ensuring adequate environmental protection. Interpretation of speciation and bioavailability data from metal mixtures can be very complex and demanding, due to the existence of kinetic physicochemical transformations of the dynamic components. This kinetic effect largely affects metals’ dynamic speciation, culminating in different transformed metal-containing products with different contributions for the metal uptake by a consuming interface. This manuscript is focused on the environmental fate of metal mixtures, which determines how the mixture is biogeochemically processed and which receptors are most exposed (organisms and exposure route), with a special focus on their dynamic speciation, including a critical evaluation of the current challenges and available dynamic speciation techniques as well as computer codes and models.

Keywords

Metals Colloidal particles Speciation Bioavailability Analytical techniques Models 

References

  1. Ahmed IAM, Hamilton-Taylor J, Lofts S, Meeussen JCL, Lin C, Zhang H, Davison W (2013) Testing copper-speciation predictions in freshwaters over a wide range of metal–organic matter ratios. Environ Sci Technol 47:1487–1495. doi:10.1021/es304150n Google Scholar
  2. Alemani D, Buffle J, Zhang Z, Galceran J, Chopard B (2008a) Metal flux and dynamic speciation at (bio)interfaces. Part III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants. Environ Sci Technol 42:2021–2027. doi:10.1021/es071319n Google Scholar
  3. Alemani D, Buffle J, Zhang Z, Galceran J, Chopard B (2008b) Metal flux and dynamic speciation at (bio)interfaces. Part IV: MHEDYN, a general code for metal flux computation; application to particulate complex ants and their mixtures with the other natural ligands. Environ Sci Technol 42:2028–2033. doi:10.1021/es702989v Google Scholar
  4. Allard T, Menguy N, Salomon J, Calligaro T, Weber T, Calas G, Benedetti MF (2004) Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil). Geochim Cosmochim Acta 68:3079–3094. doi:10.1016/j.gca.2004.01.014 Google Scholar
  5. Allègre C (2005) Géologie isotopique. Belin, ParisGoogle Scholar
  6. Apte SC, Gardner MJ, Ravenscroft JE (1988) An evaluation of voltammetric titration procedures for the determination of trace metal complexation in natural waters by use of computers simulation. Anal Chim Acta 212:1–21. doi:10.1016/S0003-2670(00)84124-0 Google Scholar
  7. Baalousha M, Nur Y, Römer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454–455:119–131. doi:10.1016/j.scitotenv.2013.02.093 Google Scholar
  8. Batley GE (1989) Trace elements speciation: analytical methods and problems. CRC Press, Boca RatonGoogle Scholar
  9. Batley GE, Apte SC, Stauber JL (2004) Speciation and bioavailability of trace metals in water: progress since 1982. Aust J Chem 57:903–919. doi:10.1071/CH04095 Google Scholar
  10. Belmont-Hébert C, Tercier ML, Buffle J, Fiaccabrino GC, Rooij NFd, Koudelka-Hep M (1998) Gel-integrated microelectrode arrays for direct voltammetric measurements of heavy metals in natural waters and other complex media. Anal Chem 70:2949–2956. doi:10.1021/ac971194c Google Scholar
  11. Benedetti MF (2006) Metal ion binding to colloids from database to field systems. J Geochem Explor 88:81–85. doi:10.1016/j.gexplo.2005.08.018 Google Scholar
  12. Benedetti MF, Milne CJ, Kinniburgh DG, Riemsdijk WHv, Koopal LK (1995) Metal ion binding to humic susbtances: application of the non-ideal competitive adsorption model. Environ Sci Technol 29:446–457Google Scholar
  13. Berg CMGvd, Donat JR (1992) Determination and data evaluation of copper complexation by organic ligands in sea water using cathodic stripping voltammetry at varying detection windows. Anal Chim Acta 257:281–291. doi:10.1016/0003-2670(92)85181-5 Google Scholar
  14. Berg CMGVD, Nimmo M, Daly P, Turner DR (1990) Effects of the detection window on the determination of organic copper speciation in estuarine waters. Anal Chim Acta 232:149–159. doi:10.1016/S0003-2670(00)81231-3 Google Scholar
  15. Bryan SE, Tipping E, Hamilton-Taylor J (2002) Comparison of measured and modelled copper binding by natural organic matter in freshwaters. Comp Biochem Physiol C Toxicol Pharmacol 133:37–49. doi:10.1016/S1532-0456(02)00083-2 Google Scholar
  16. Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang J (1998) A generalized description of aquatic colloidal interactions: the three colloidal component approach. Environ Sci Technol 32:2887–2899Google Scholar
  17. Buffle J, Zhang Z, Startchev K (2007) Metal flux and dynamic speciation at (bio)interfaces. Part I: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ Sci Technol 41:7609–7620. doi:10.1021/es070702p Google Scholar
  18. Buss HL, Lüttge A, Brantley SL (2007) Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chem Geol 240:326–342. doi:10.1016/j.chemgeo.2007.03.003 Google Scholar
  19. Cantwell FF, Nielsen JS, Hrudey SE (1982) Free nickel ion concentration in sewage by an ion exchange column-equilibration method. Anal Chem 54:1498–1503. doi:10.1021/ac00246a012 Google Scholar
  20. Cornelis G, Pang L, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463–464:120–130. doi:10.1016/j.scitotenv.2013.05.089 Google Scholar
  21. Degryse F, Smolders E, Merckx R (2005) Labile Cd complexes increase Cd availability to plants. Environ Sci Technol 40:830–836. doi:10.1021/es050894t Google Scholar
  22. Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (Cd Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications: a review. Eur J Soil Sci 60:590–612. doi:10.1111/j.1365-2389.2009.01142.x Google Scholar
  23. Domingos RF, Pinheiro JP (2014) Implications of the use of nanomaterials for environmental protection: challenges in designing environmentally relevant toxicological experiments. In: Kharisov BI, Kharissova OV, Dias HVR (eds) Nanomaterials for environmental protection. Wiley, Inc., HobokenGoogle Scholar
  24. Domingos RF, Benedetti MF, Pinheiro JP (2007) Application of permeation liquid membrane and scanned stripping chronopotentiometry to metal speciation analysis of colloidal complexes. Anal Chim Acta 589:261–268. doi:10.1016/j.aca.2007.02.056 Google Scholar
  25. Domingos RF, Huidobro C, Companys E, Galceran J, Puy J, Pinheiro JP (2008a) Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis. J Electroanal Chem 617:141–148. doi:10.1016/j.jelechem.2008.02.002 Google Scholar
  26. Domingos RF, Lopez R, Pinheiro JP (2008b) Trace metal dynamic speciation studied by scanned stripping chronopotentiometry (SSCP). Environ Chem 5:24–32. doi:10.1071/EN07088 Google Scholar
  27. Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286. doi:10.1021/es8023594 Google Scholar
  28. Domingos RF, Franco C, Pinheiro JP (2014) The role of charged polymer coatings of nanoparticles on the speciation and fate of metal ions in the environment. Environ Sci Pollut Res. doi:10.1007/s11356-014-3546-8
  29. Dudal Y, Gérard F (2004) Accounting for natural organic matter in aqueous chemical equilibrium models: a review of the theories and applications. Earth-Sci Rev 66:199–216. doi:10.1016/j.earscrev.2004.01.002 Google Scholar
  30. Duval JFL (2009) Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects. J Phys Chem A 113:2275–2293. doi:10.1021/jp809764h Google Scholar
  31. Duval JFL (2013) Dynamics of metal uptake by charged biointerphases: bioavailability and bulk depletion. Phys Chem Chem Phys 15:7873–7888. doi:10.1039/C3CP00002H Google Scholar
  32. Filella M (2008) NOM site binding heterogeneity in natural waters: discrete approaches. J Mol Liq 143:42–51. doi:10.1016/j.molliq.2008.04.018 Google Scholar
  33. Fogg AG (1994) Adsorptive stripping voltammetry or cathodic stripping voltammetry? Methods of accumulation and determination in stripping voltammetry. Anal Proc 31:313–317. doi:10.1039/AI9943100313 Google Scholar
  34. Fortin C, Campbell PGC (1998) An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media. Int J Environ Anal Chem 72:173–194. doi:10.1080/03067319808035889 Google Scholar
  35. Friedly JC, Rubin J (1992) Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions. Water Resour Res 28:1935–1953. doi:10.1029/92WR00699 Google Scholar
  36. Galceran J, Puy J, Salvador J, Cecília J, Leeuwen HPv (2001) Voltammetric lability of metal complexes at spherical microelectrodes with various radii. J Electroanal Chem 505:85–94. doi:10.1016/S0022-0728(01)00475-2 Google Scholar
  37. Galceran J, Companys E, Puy J, Cecília J, Garcés JL (2004a) AGNES: a new electroanalytical technique for measuring free metal ion concentration. J Electroanal Chem 566:95–109Google Scholar
  38. Galceran J, Monné J, Puy J, Leeuwen HPv (2004b) The impact of the transient uptake flux on bioaccumulation: linear adsorption and first-order internalisation coupled with spherical semi-infinite mass transport. Mar Chem 85:89–102. doi:10.1016/j.marchem.2003.09.005 Google Scholar
  39. Ge Y, MacDonald D, Sauvé S, Hendershot W (2005) Modeling of Cd and Pb speciation in soil solutions by WinHumicV and NICA-Donnan model. Environ Model Softw 20:353–359. doi:10.1016/j.envsoft.2003.12.014 Google Scholar
  40. Gélabert A et al (2014) Uncoated and coated ZnO nanoparticle life cycle in synthetic seawater. Environ Toxicol Chem 33:341–349. doi:10.1002/etc.2447 Google Scholar
  41. Goldberg S, Criscenti LJ, Turner DR, Davis JA, Cantrell KJ (2007) Adsorption-desorption processes in subsurface reactive transport modeling. Vadose Zone J 6:407–435. doi:10.2136/vzj2006.0085 Google Scholar
  42. Groenenberg JE, Koopmans GF, Comans RNJ (2010) Uncertainty analysis of the nonideal competitive adsorption–Donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution. Environ Sci Technol 44:1340–1346. doi:10.1021/es902615w Google Scholar
  43. Gustafsson JP (2001) Modeling the acid-base properties and metal complexation of humic substances with the Stockholm humic model. J Coll Interf Sci 244:102–112. doi:10.1006/jcis.2001.7871 Google Scholar
  44. Gustafsson JP, Pechová P, Berggren D (2003) Modeling metal binding to soils: the role of natural organic matter. Environ Sci Technol 37:2767–2774. doi:10.1021/es026249t Google Scholar
  45. Gustafsson JP, Persson I, Kleja DB, Schaik JWJv (2007) Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling. Environ Sci Technol 41:1232–1237. doi:10.1021/es0615730 Google Scholar
  46. Guthrie JW et al (2005) Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Anal Chim Acta 528:205–218. doi:10.1016/j.aca.2004.10.003 Google Scholar
  47. Ha J, Gélabert A, Spormann AM, Brown GE Jr (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 74:1–15. doi:10.1016/j.gca.2009.06.031 Google Scholar
  48. Hamilton-Taylor J, Ahmed IAM, Davison W, Zhang H (2011) How well can we predict and measure metal speciation in freshwaters? Environ Chem 8:461–465. doi:10.1071/EN11031 Google Scholar
  49. Hamon RE, Bertrand I, McLaughlin MJ (2002) Use and abuse of isotopic exchange data in soil chemistry. Aust J Soil Res 40:1371–1381. doi:10.1071/SR02046 Google Scholar
  50. Hamon RE, Parker DR, Lombi E (2008) Advances in isotopic dilution techniques in trace element research: a review of methodologies, benefits, and limitations. In: Sparks D (ed) Advances in agronomy, vol 99. Elsevier Academic Press Inc, San Diego, pp 289–343. doi:10.1016/S0065-2113(08)00406-9
  51. Han S, Naito W, Hanai Y, Masunaga S (2013) Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model. Water Res 47:4880–4892. doi:10.1016/j.watres.2013.05.025 Google Scholar
  52. Helleferich FG (1962) Ion exchange. McGraw-Hill, New YorkGoogle Scholar
  53. Hernlem BJ, Vane LM, Sayles GD (1996) Stability constants for complexes of the siderophore desferrioxamine B with selected heavy metal cations. Inorg Chim Acta 244:178–184. doi:10.1016/0020-1693(95)04780-8 Google Scholar
  54. Hersman L, Lloyd T, Sposito G (1995) Siderophore-promoted dissolution of hematite. Geochim Cosmochim Acta 59:3327–3330Google Scholar
  55. Hiemstra T, Riemsdijk WHV (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J Coll Interf Sci 179:488–508. doi:10.1006/jcis.1996.0242 Google Scholar
  56. Jorand F, Boué-Bigne F, Block JC, Urbain V (1998) Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci Technol 37:307–315Google Scholar
  57. Kalis EJJ, Weng L, Dousma F, Temminghoff EJM, Riemsdijk WHV (2006) Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique. Environ Sci Technol 40:955–961. doi:10.1021/es051435v Google Scholar
  58. Kalis EJJ, Weng L, Temminghoff EJM, Riemsdijk WHv (2007) Measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique. Anal Chem 79:1555–1563. doi:10.1021/ac0615403 Google Scholar
  59. Kalvoda R, Kopanica L (1989) Adsorptive stripping voltammetry in trace analysis. Pure Appl Chem 61:97–112Google Scholar
  60. Keizer MG, Riemsdijk WHv (1994) ECOSAT: equilibrium calculation of speciation and transport. Manual Program. Agricultural University of Wageningen, WageningenGoogle Scholar
  61. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692–1708. doi:10.1007/s11051-013-1692-4 Google Scholar
  62. Kinniburgh DG, Riemsdijk WHv, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf A Physicochem Eng Asp 151:147–166. doi:10.1016/S0927-7757(98)00637-2 Google Scholar
  63. Lamelas C, Benedetti M, Wilkinson KJ, Slaveykova VI (2006) Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere 65:1362–1370. doi:10.1016/j.chemosphere.2006.04.021 Google Scholar
  64. Lead JR, Wilkinson KJ (2007) Environmental colloids and particles: current knowledge and future developments. In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, separation and characterisation, vol 10., IUPAC Series on analytical and physical chemistry of environmental systemsWiley, Chichester, pp 1–15Google Scholar
  65. Leeuwen HPv (2001) Revisited the conception of lability of metal complexes. Electroanalysis 13:826–830. doi:10.1002/1521-4109(200106)13:10<826:AID-ELAN826>3.0.CO;2-J Google Scholar
  66. Leeuwen HPv, Jansen S (2005) Dynamic aspects of metal speciation by competitive ligand exchange–adsorptive stripping voltammetry (CLE–AdSV). J Electroanal Chem 579:337–342. doi:10.1016/j.jelechem.2005.03.006 Google Scholar
  67. Leeuwen HPv et al (2005) Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ Sci Technol 39:8545–8556. doi:10.1021/es050404x Google Scholar
  68. Lofts S, Tipping E (2011) Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. Environ Chem 8:501–516. doi:10.1071/EN11049 Google Scholar
  69. Lorenzo JI, Nieto O, Beiras R (2006) Anodic stripping voltammetry measures copper bioavailability for sea urchin larvae in the presence of fulvic acids. Environ Toxicol Chem 25:36–44. doi:10.1897/05-236R.1 Google Scholar
  70. Louis Y, Cmuk P, Omanović D, Garnier C, Lenoble V, Mounier S, Pižeta I (2008) Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper. Anal Chim Acta 606:37–44. doi:10.1016/j.aca.2007.11.011 Google Scholar
  71. Lyklema H (2005) Pair interactions. In: Lyklema J (ed) Fundamentals of interface and colloid science. Volume IV: particulate colloids, vol 4. Fundamentals of interface and colloid science. Elsevier Academic Press, Amsterdam, pp 3.1–3.186Google Scholar
  72. Marang L, Reiller P, Pepe M, Benedetti MF (2006) Donnan membrane approach: from equilibrium to dynamic speciation. Environ Sci Technol 40:5496–5501. doi:10.1021/es060608t Google Scholar
  73. Martin J-M, Dai M-H, Cauwet G (1995) Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnol Oceanogr 40:119–131Google Scholar
  74. Mawji E et al (2008) Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ Sci Technol 42:8675–8680. doi:10.1021/es801884r Google Scholar
  75. Meeussen JCL (2003) ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environ Sci Technol 37:1175–1182. doi:10.1021/es025597s Google Scholar
  76. Meyer JS et al (1999) Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-ion activity does not. Environ Sci Technol 33:913–916. doi:10.1021/es980715q Google Scholar
  77. Meylan S, Odzak N, Behra R, Sigg L (2004) Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. Anal Chim Acta 510:91–100. doi:10.1016/j.aca.2003.12.052 Google Scholar
  78. Mongin S, Uribe R, Puy J, Cecília J, Galceran J, Zhang H, Davison W (2011) Key role of the resin layer thickness in the lability of complexes measured by DGT. Environ Sci Technol 45:4869–4875. doi:10.1021/es200609v Google Scholar
  79. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, ChichesterGoogle Scholar
  80. Mota AM, Pinheiro JP, Gonçalves MLS (2012) Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects. J Phys Chem A 116:6433–6442. doi:10.1021/jp2124636 Google Scholar
  81. Mueller KK, Lofts S, Fortin C, Campbell PGC (2012) Trace metal speciation predictions in natural aquatic systems: incorporation of dissolved organic matter (DOM) spectroscopic quality. Environ Chem 9:356–368. doi:10.1071/EN11156 Google Scholar
  82. Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755. doi:10.1021/es990495w Google Scholar
  83. Nowack B, Xue H, Sigg L (1997) Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environ Sci Technol 31:866–872. doi:10.1021/es960556f Google Scholar
  84. Parat C, Authier I, Aguilar D, Companys E, Puy J, Galceran J, Potin-Gautier M (2011) Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES. Analyst 136:4337–4343. doi:10.1039/C1AN15481H Google Scholar
  85. Pesavento M, Alberti G, Biesuz R (2009) Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta 631:129–141. doi:10.1016/j.aca.2008.10.046 Google Scholar
  86. Pinheiro JP, Leeuwen HPv (2004) Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation. J Electroanal Chem 570:69–75. doi:10.1016/j.jelechem.2004.03.016 Google Scholar
  87. Pinheiro JP, Minor M, Leeuwen HPv (2005) Metal speciation dynamics in colloidal ligand dispersions. Langmuir 21:8635–8642. doi:10.1021/la0504210 Google Scholar
  88. Pinheiro JP, Salvador J, Companys E, Galceran J, Puy J (2010) Experimental verification of the metal flux enhancement in a mixture of two metal complexes: the Cd/NTA/glycine and Cd/NTA/citric acid systems. Phys Chem Chem Phys 12:1131–1138. doi:10.1039/B915486H Google Scholar
  89. Polubesova T, Chefetz B (2014) DOM-affected transformation of contaminants on mineral surfaces: a review. Critical Rev Environ Sci Technol 44:223–254. doi:10.1080/10643389.2012.710455 Google Scholar
  90. Pomogailo AD, Kestelman VN (2005) Principles and mechanisms of nanoparticle stabilization by polymers. In: Pomogailo AD, Kestelman VN (eds) Metallopolymer nanocomposites. Springer, Berlin, vol 81, pp 65–113. doi:10.1007/3-540-26523-6_3
  91. Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287:833–834. doi:10.1038/287833a0 Google Scholar
  92. Pretsch E (2007) The new wave of ion-selective electrodes. Trends Anal Chem 26:47–51. doi:10.1016/j.trac.2006.10.006 Google Scholar
  93. Puy J et al (2012) Lability criteria in diffusive gradients in thin film. J Phys Chem A 116:6564–6573. doi:10.1021/jp212629z Google Scholar
  94. Qin X, Liu F, Wang G (2012) Fractionation and kinetic processes of humic acid upon adsorption on colloidal hematite in aqueous solution with phosphate. Chem Eng J 209:458–463. doi:10.1016/j.cej.2012.08.026 Google Scholar
  95. Rahmana MA et al (2014) Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicol Environ Saf 106:126–135. doi:10.1016/j.ecoenv.2014.03.004 Google Scholar
  96. Reiller PE (2012) Modelling metal–humic substances–surface systems: reasons for success, failure and possible routes for peace of mind. Mineral Mag 76:2643–2658. doi:10.1180/minmag.2012.076.7.02 Google Scholar
  97. Ren Z-L et al (2014) Metal speciation and dissolved organic matter composition in soil solutions. Chem Geol (in press)Google Scholar
  98. Riemsdijk WHv, Koopal LK, Kinniburgh DG, Benedetti MF, Weng L (2006) Modeling the interactions between humics, ions, and mineral surfaces. Environ Sci Technol 40:7473–7480. doi:10.1021/es0607786 Google Scholar
  99. Rodriguez-Gonzalez P, Marchante-Gayon JM, Alonso JIG, Sanz-Medel A (2005) Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim Acta Part B: Atomic Spectrosc 60:151–207. doi:10.1016/j.sab.2005.01.005 Google Scholar
  100. Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317. doi:10.1002/jobm.201100552 Google Scholar
  101. Sánchez-Marín P, Lorenzo JI, Mubiana VK, Blust R, Beiras R (2012) Copper uptake by the marine mussel Mytilus edulis in the presence of fulvic acids. Environ Toxicol Chem 31:1807–1813. doi:10.1002/etc.1874 Google Scholar
  102. Sánchez-Marín P, Fortin C, Campbell PGC (2013) Copper and lead internalisation by freshwater microalgae at different carbonate concentrations. Environ Chem 10:80–90. doi:10.1071/EN13011 Google Scholar
  103. Scally S, Davison W, Zhang H (2006) Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal Chim Acta 558:222–229. doi:10.1016/j.aca.2005.11.020 Google Scholar
  104. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. doi:10.1111/j.1462-2920.2011.02556.x Google Scholar
  105. Serrano N et al (2007) Full-wave analysis of stripping chronopotentiograms at scanned deposition potential (SSCP) as a tool for heavy metal speciation: theoretical development and application to Cd(II)-phthalate and Cd(II)-iodide systems. J Electroanal Chem 600:275–284. doi:10.1016/j.jelechem.2006.10.007 Google Scholar
  106. Shenker M, Chen Y, Hadar Y (1996) Stability constants of the fungal siderophore rhizoferrin with various microelements and calcium. Soil Sci Soc Am J 60:1140–1144. doi:10.2136/sssaj1996.03615995006000040026x Google Scholar
  107. Sigg L et al (2006) Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ Sci Technol 40:1934–1941. doi:10.1021/es051245k Google Scholar
  108. Sivry Y, Riotte J, Dupre B (2006) Study of exchangeable metal on colloidal humic acids and particulate matter by coupling ultrafiltration and isotopic tracers: application to natural waters. J Geochem Explor 88:144–147. doi:10.1016/j.gexplo.2005.08.101 Google Scholar
  109. Sivry Y, Riotte J, Sappin-Didier V, Munoz M, Redon PO, Denaix L, Dupre B (2011) Multielementary (Cd, Cu, Pb, Zn, Ni) stable isotopic exchange kinetic (SIEK) method to characterize polymetallic contaminations. Environ Sci Technol 45:6247–6253. doi:10.1021/es2006644 Google Scholar
  110. Sivry Y et al (2014) Behavior and fate of industrial zinc oxide nanoparticles in a carbonate-rich river water. Chemosphere 95:519–526. doi:10.1016/j.chemosphere.2013.09.110 Google Scholar
  111. Slaveykova VI, Wilkinson KJ (2005) Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ Chem 2:9–24Google Scholar
  112. Stuart MC, Vries Rd, Lyklema H (2005) Polyelectrolytes. In: Lyklema J (ed) Fundamentals of interface and colloid science. Volume V: soft colloids. Fundamentals of interface and colloid science. Elsevier Academic Press, Amsterdam, vol 5, pp 2.1–2.84Google Scholar
  113. Sweileh JA, Lucyk D, Kratochvil B, Cantwell FF (1987) Specificity of the ion exchange—atomic absorption method for free copper(II) determination in natural waters. Anal Chem 59:586–592. doi:10.1021/ac00131a011 Google Scholar
  114. Temminghoff EJM, Plette ACC, Eck RV, Riemsdijk WHV (2000) Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal Chim Acta 417:149–157. doi:10.1016/S0003-2670(00)00935-1 Google Scholar
  115. Tercier M-L, Buffle J (1996) Antifouling membrane-covered voltammetric microsensor for in situ measurements in natural waters. Anal Chem 68:3670–3678. doi:10.1021/ac960265p Google Scholar
  116. Tercier-Waeber M-L, Belmont-Hébert C, Buffle J (1998) Real-time continuous Mn(II) monitoring in lakes using a novel voltammetric in situ profiling system. Environ Sci Technol 32:1515–1521. doi:10.1021/es9706108 Google Scholar
  117. Tercier-Waeber M-L et al (2000) A novel voltammetric probe with individually addressable gel-integrated microsensor arrays for real-time high spatial resolution concentration profile measurements. Electroanalysis 12:27–34. doi:10.1002/(SICI)1521-4109(20000101)12:1<27:AID-ELAN27>3.0.CO;2-R Google Scholar
  118. Tercier-Waeber M-L, Confalonieri F, Koudelka-Hep M, Dessureault-Rompré J, Graziottin F, Buffle J (2008) Gel-integrated voltammetric microsensors and submersible probes as reliable tools for environmental trace metal analysis and speciation. Electroanalysis 20:240–258. doi:10.1002/elan.200704067 Google Scholar
  119. Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions between protons and metal ions with humic substances. Aquat Geochem 4:3–48Google Scholar
  120. Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim Cosmochim Acta 66:3211–3224. doi:10.1016/S0016-7037(02)00930-4 Google Scholar
  121. Tipping E, Lofts S, Sonke JE (2011) Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances. Environ Chem 8:225–235. doi:10.1071/EN11016 Google Scholar
  122. Town RM (2008) Metal binding by heterogeneous ligands: kinetic master curves from SSCP waves. Environ Sci Technol 42:4014–4021. doi:10.1021/es703236b Google Scholar
  123. Town RM, Filella M (2002) Crucial role of the detection window in metal ion speciation analysis in aquatic systems: the interplay of thermodynamic and kinetic factors as exemplified by nickel and cobalt. Anal Chim Acta 466:285–293. doi:10.1016/S0003-2670(02)00570-6 Google Scholar
  124. Town RM, Leeuwen HPv (2002a) Effects of adsorption in stripping chronopotentiometric metal speciation analysis. J Electroanal Chem 523:1–15. doi:10.1016/S0022-0728(02)00747-7 Google Scholar
  125. Town RM, Leeuwen HPv (2002b) Significance of wave form parameters in stripping chronopotentiometric metal speciation analysis. J Electroanal Chem 535:11–25. doi:10.1016/S0022-0728(02)01157-9 Google Scholar
  126. Town RM, Leeuwen HPv (2003) Stripping chronopotentiometry at scanned deposition potential (SSCP): part 2. Determination of metal ion speciation parameters. J Electroanal Chem 541:51–65. doi:10.1016/S0022-0728(02)01314-1 Google Scholar
  127. Town RM, Leeuwen HPv (2004) Dynamic speciation analysis of heterogeneous metal complexes with natural ligands by stripping chronopotentiometry at scanned deposition potential (SSCP). Aust J Chem 57:983–992. doi:10.1071/CH04088 Google Scholar
  128. Unsworth ER et al (2006) Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ Sci Technol 40:1942–1949. doi:10.1021/es051246c Google Scholar
  129. Uribe R, Mongin S, Puy J, Cecília J, Galceran J, Zhang H, Davison W (2011) Contribution of partially labile complexes to the DGT metal flux. Environ Sci Technol 45:5317–5322. doi:10.1021/es200610n Google Scholar
  130. van Leeuwen HP, Town RM (2003) Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential. Environ Sci Technol 37:3945–3952Google Scholar
  131. Vega FA, Weng L (2013) Speciation of heavy metals in River Rhine. Water Res 47:363–372. doi:10.1016/j.watres.2012.10.012 Google Scholar
  132. Weng L, Riemsdijk WHV, Temminghoff EJM (2005) Kinetic aspects of Donnan membrane technique for measuring free trace cation concentration. Anal Chem 77:2852–2861. doi:10.1021/ac0485435 Google Scholar
  133. Whitfield M, Turner DR (1979) Water-rock partition coefficients and the composition of river and seawater. Nature 278:132–136. doi:10.1038/278132a0 Google Scholar
  134. Wilkinson KJ, Reinhardt A (2005) Contrasting roles of natural organic matter on colloidal stabilization and flocculation in freshwaters. In Flocculation in natural and engineered environmental systems. CRC press, Boca RatonGoogle Scholar
  135. Worms IAM, Wilkinson KJ (2008) Determination of Ni2 + using an equilibrium ion exchange technique: important chemical factors and applicability to environmental samples. Anal Chim Acta 616:95–102. doi:10.1016/j.aca.2008.04.004 Google Scholar
  136. Xiong J et al (2013) Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy. Environ Sci Technol 47:11634–11642. doi:10.1021/es402123v Google Scholar
  137. Xue B-B, Sigg L (2002) Environmental electrochemistry. In: Tailefert M, Rozan TF (eds) Analyses of trace element biogeochemistry. American Chemical Society, Washington, p 336Google Scholar
  138. Zelano I et al (2013) Colloids and suspended particulate matters influence on Ni availability in surface waters of impacted ultramafic systems in Brazil. Coll Surf A Physicochem Eng Asp 435:36–47. doi:10.1016/j.colsurfa.2013.02.051 Google Scholar
  139. Zhang H (2004) In-situ speciation of Ni and Zn in freshwaters: comparison between DGT measurements and speciation models. Environ Sci Technol 38:1421–1427. doi:10.1021/es034654u Google Scholar
  140. Zhang Z, Buffle J (2009a) Interfacial metal flux in ligand mixtures. 3. Unexpected flux enhancement due to kinetic interplay at the consuming surface, computed for aquatic systems. Environ Sci Technol 43:5762–5768. doi:10.1021/es9003526 Google Scholar
  141. Zhang Z, Buffle J (2009b) Metal flux and dynamic speciation at (bio)interfaces. Part V: the roles of simple, fulvic and aggregate complexes on Pb flux in freshwater ligand mixtures, computed at planar consuming interfaces. Geochim Cosmochim Acta 73:1223–1235. doi:10.1016/j.gca.2008.11.025 Google Scholar
  142. Zhang Z, Buffle J (2009c) Metal flux and dynamic speciation at (bio)interfaces. Part VI: the roles of simple, fulvic and aggregate complexes on computed metal flux in freshwater ligand mixtures; comparison of Pb, Zn and Ni at planar and microspherical interfaces. Geochim Cosmochim Acta 73:1236–1243. doi:10.1016/j.gca.2008.11.026 Google Scholar
  143. Zhang H, Davison W (1995) Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem 72:3391–3400. doi:10.1021/ac00115a005 Google Scholar
  144. Zhang H, Davison W (2000) Direct In situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films. Anal Chem 72:4447–4457. doi:10.1021/ac0004097 Google Scholar
  145. Zhang Z, Buffle J, Alemani D (2007) Metal flux and dynamic speciation at (bio)interfaces. Part II: evaluation and compilation of physicochemical parameters for complexes with particles and aggregates. Environ Sci Technol 41:7621–7631. doi:10.1021/es071117r Google Scholar
  146. Zhang Z, Buffle J, Startchev K, Alemani D (2008) FLUXY: a simple code for computing steady-state metal fluxes at consuming (bio)interfaces, in natural waters. Environ Chem 5:204–217. doi:10.1071/EN07095 Google Scholar
  147. Zhang Z, Buffle J, Town RM, Puy J, Leeuwen HPv (2009) Metal flux in ligand mixtures. 2. Flux enhancement due to kinetic interplay: comparison of the reaction layer approximation with a rigorous approach. J Phys Chem A 113:6572–6580. doi:10.1021/jp8114308 Google Scholar
  148. Zhang Z, Alemani D, Buffle J, Town RM, Wilkinson KJ (2011) Metal flux through consuming interfaces in ligand mixtures: boundary conditions do not influence the lability and relative contributions of metal species. Phys Chem Chem Phys 13:17606–17614. doi:10.1039/C1CP20705A Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rute F. Domingos
    • 1
  • Alexandre Gélabert
    • 2
  • Sara Carreira
    • 1
  • Ana Cordeiro
    • 1
  • Yann Sivry
    • 2
  • Marc F. Benedetti
    • 2
  1. 1.Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Institut de Physique du Globe de Paris, Sorbonne Paris Cité, UMR CNRS 7154Université Paris DiderotParis Cedex 05France

Personalised recommendations