Advertisement

Aquatic Geochemistry

, Volume 21, Issue 2–4, pp 81–97 | Cite as

The Effect of Monovalent Electrolytes on the Deprotonation of MAl12 Keggin Ions

  • Johannes LützenkirchenEmail author
  • Remi Marsac
  • William H. Casey
  • Gerhard Furrer
  • Tom Kupcik
  • Patric Lindqvist-Reis
Original Paper

Abstract

We study the deprotonation of MAl12 Keggin ions in monovalent electrolyte solutions of varying composition and concentration by potentiometric titration. The structures exhibit very steep deprotonation, where the singly coordinated aquo groups lose protons within a narrow pH range. Once the deprotonation is substantial, the Keggin ions start to aggregate by dehydration and linkage of terminal functional groups into hydroxo-bridges. In the present study, we address three aspects with our experiments. We test the cation-specificity, the anion-specificity and the overall effect of electrolyte concentration with respect to the deprotonation behavior. Our results show that the cation series in chloride systems does not show any ion-specificity and all the curves coincide for the 100 mM solutions, whereas the anion series in sodium systems does. The most structure-making anion (bromate) used in this study causes aggregation of the Keggins prior to the onset of aggregation in the presence of border-line and structure-breaking anions (chloride, nitrate and perchlorate). For the latter, no significant difference is observed. The fluoride ion causes a completely different behavior. No significant deprotonation pH effect is observed where deprotonation occurs in the absence of fluoride. At even higher pH, massive consumption of hydroxide occurs. Some possible scenarios for the behavior of the fluoride-containing systems are discussed.

Keywords

Keggin ions Cations Anions Potentiometry Fluoride 

Notes

Acknowledgments

WHC thank the US Department of Energy for support via Grant DE-FG02-05ER15693.

Supplementary material

10498_2014_9250_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)

References

  1. Adekola F et al (2011) Characterization of acid–base properties of two gibbsite samples in the context of literature results. J Colloid Interface Sci 354:306–317. doi: 10.1016/j.jcis.2010.10.014 CrossRefGoogle Scholar
  2. Allouche L, Taulelle F (2003) Fluorination of the epsilon-Keggin Al-13 polycation. Chem Commun 16:2084–2085. doi: 10.1039/B303585a CrossRefGoogle Scholar
  3. Amirbahman A, Gfeller M, Furrer G (2000) Kinetics and mechanism of ligand-promoted decomposition of the Keggin Al13 polymer. Geochim Cosmochim Ac 64:91–919CrossRefGoogle Scholar
  4. Bino A, Ardon M, Lee D, Spingler B, Lippard SJ (2002) Synthesis and structure of [Fe13O4F24(OMe)(12)](5-): the first open-shelf Keggin ion. J Am Chem Soc 124:4578–4579. doi: 10.1021/Ja025590a CrossRefGoogle Scholar
  5. Buerge-Weirich D, Hari R, Xue HB, Behra P, Sigg L (2002) Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands. Environ Sci Technol 36:328–336. doi: 10.1021/Es010892i CrossRefGoogle Scholar
  6. Casey WH (2006) Large aqueous aluminum hydroxide molecules. Chem Rev 106:1–16. doi: 10.1021/Cr040095d CrossRefGoogle Scholar
  7. Casey WH, Phillips BL (2001) Kinetics of oxygen exchange between sites in the GaO4Al12(OH)24(H2O)127+(aq) molecule and aqueous solution. Geochim Cosmochim Acta 65:705–714. doi: 10.1016/S0016-7037(00)00611-6 CrossRefGoogle Scholar
  8. Casey WH, Swaddle TW (2003) Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Rev Geophys 41 Artn:1008. doi: 10.1029/2002rg000118
  9. Casey WH, Phillips BL, Karlsson M, Nordin S, Nordin JP, Sullivan DJ, Neugebauer-Crawford S (2000) Rates and mechanisms of oxygen exchanges between sites in the AlO4Al12(OH)24(H2O)127+(aq) complex and water: implications for mineral surface chemistry. Geochim Cosmochim Acta 64:2951–2964. doi: 10.1016/S0016-7037(00)00395-1 CrossRefGoogle Scholar
  10. Casey WH, Rustad JR, Banerjee D, Furrer G (2005) Large molecules as models for small particles in aqueous geochemistry research. J Nanopart Res 7:377–387. doi: 10.1007/s11051-005-4718-8 CrossRefGoogle Scholar
  11. Czap A, Neuman NI, Swaddle TW (2006) Electrochemistry and homogeneous self-exchange kinetics of the aqueous 12-tungstoaluminate(5-/6-) couple. Inorg Chem 45:9518–9530. doi: 10.1021/Ic060527y CrossRefGoogle Scholar
  12. Dumont F, Watillon A (1971) Stability of ferric oxide hydrosols. Discuss Faraday Soc 52:352–360CrossRefGoogle Scholar
  13. Forde S, Hynes MJ (2002) Kinetics and mechanism of the reactions of the Al13 Keggin oligomer, [AlO4Al12(OH)24(H2O)12]7+, with a series of phenolic ligands. New J Chem 26:1029–1034CrossRefGoogle Scholar
  14. Franks GV, Johnson SB, Scales PJ, Boger DV, Healy TW (1999) Ion-specific strength of attractive particle networks. Langmuir 15:4411–4420. doi: 10.1021/la9815345 CrossRefGoogle Scholar
  15. Furrer G, Ludwig C, Schindler PW (1992) On the chemistry of the Keggin Al13 polymer: 1. Acid–base properties. J Colloid Interface Sci 149:56–67. doi: 10.1016/0021-9797(92)90391-X CrossRefGoogle Scholar
  16. Furrer G, Gfeller M, Wehrli B (1999) On the chemistry of the Keggin Al13 polymer: kinetics of proton-promoted decomposition. Geochim Cosmochim Acta 63:3069–3076CrossRefGoogle Scholar
  17. Furrer G, Phillips BL, Ulrich KU, Pothig R, Casey WH (2002a) The origin of aluminum flocs in polluted streams. Science 297:2245–2247. doi: 10.1126/science.1076505 CrossRefGoogle Scholar
  18. Furrer G, Casey WH, Phillips BL (2002b) The continuous growth of aqueous aluminum nanoclusters. Geochim Cosmochim Acta 66:A250Google Scholar
  19. Hernandez J (1998) Synthèse de nanoparticules d'oxydes de fer et d'aluminium pour l'étude de l'adsorption d'entités inorganiques polycondensées. Conséquences sur la stabilité des dispersion. Ph.D. thesis, Universite Pierre et Marie Curie, Paris, FranceGoogle Scholar
  20. Hiemstra T, Van Riemsdijk WH (2006) On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J Colloid Interface Sci 301:1–18. doi: 10.1016/j.jcis.2006.05.008 CrossRefGoogle Scholar
  21. Hiemstra T, Rietra RPJJ, Van Riemsdijk WH (2007) Surface complexation of selenite on goethite: MO/DFT geometry and charge distribution. Croat Chem Acta 80:313–324Google Scholar
  22. Hill CL (1998) Introduction: polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problem. Chem Rev 98:1–2CrossRefGoogle Scholar
  23. Jin X, Wu H, Jiang X, Zhang H (2014) Effect of fluorine substitution on structures and reactivity of Keggin-Al13 in aqueous solution: an exploration of the fluorine substitution mechanism. Phys Chem Chem Phys 16:10566–10572. doi: 10.1039/c3cp55290j CrossRefGoogle Scholar
  24. Johnson SB, Franks GV, Scales PJ, Healy TW (1999) The binding of monovalent electrolyte ions on α-alumina. II. The shear yield stress of concentrated suspensions. Langmuir 15:2844–2853. doi: 10.1021/la9808768 CrossRefGoogle Scholar
  25. Johnson RL, Ohlin CA, Pellegrini K, Burns PC, Casey WH (2013) Dynamics of a nanometer-sized uranyl cluster in solution. Angew Chem Int Edit 52:7464–7467. doi: 10.1002/anie.201301973 CrossRefGoogle Scholar
  26. Karamalidis AK, Dzombak DA (2011) Surface complexation modeling: gibbsite. Wiley, HobokenGoogle Scholar
  27. Keizer MG, van Riemdijk WH (1994) ECOSAT: equilibrium calculation of speciation and transport. Agricultural University of Wageningen, WageningenGoogle Scholar
  28. Lee AP, Furrer G, Casey WH (2002) On the acid–base chemistry of the Keggin polymers: GaAl12 and GeAl12. J Colloid Interface Sci 250:269–270. doi: 10.1006/jcis.2002.8296 CrossRefGoogle Scholar
  29. Lützenkirchen J (2013) Specific ion effects at two single-crystal planes of sapphire. Langmuir 29:7726–7734. doi: 10.1021/la401509y CrossRefGoogle Scholar
  30. Lützenkirchen J, Kupcik T, Fuss M, Walther C, Sarpola A, Sundman O (2010a) Adsorption of Al-13-Keggin clusters to sapphire c-plane single crystals: kinetic observations by streaming current measurements. Appl Surf Sci 256:5406–5411. doi: 10.1016/j.apsusc.2009.12.095 CrossRefGoogle Scholar
  31. Lützenkirchen J et al (2010b) An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface. Adv Colloid Interface 157:61–74. doi: 10.1016/j.cis.2010.03.003 CrossRefGoogle Scholar
  32. Muller B, Sigg L (1990) Interaction of trace-metals with natural particle surfaces—comparison between adsorption experiments and field-measurements. Aquat Sci 52:75–92. doi: 10.1007/Bf00878242 CrossRefGoogle Scholar
  33. Nordin JP, Sullivan DJ, Phillips BL, Casey WH (1999) Mechanisms for fluoride-promoted dissolution of bayerite [beta-Al(OH)(3)(s)] and boehmite [gamma-AlOOH]: F-19-NMR spectroscopy and aqueous surface chemistry. Geochim Cosmochim Acta 63:3513–3524. doi: 10.1016/S0016-7037(99)00185-4 CrossRefGoogle Scholar
  34. Öhman LO, Lövgren L, Hedlung T, Sjöberg S (2006) The ionic strength dependency of mineral solubility and chemical speciation in solution. In: Lützenkirchen J (ed) Surface complexation modelling. Elsevier, AmsterdamGoogle Scholar
  35. Parker DR, Kinraide TB, Zelazny LW (1989) On the phytotoxicity of polynuclear hydroxy-aluminum complexes. Soil Sci Soc Am J 53:789–796CrossRefGoogle Scholar
  36. Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Inv Rep 99-4259, p 312Google Scholar
  37. Pavlova V, Sigg L (1988) Adsorption of trace-metals on aluminum-oxide—a simulation of processes in fresh-water systems by close approximation to natural conditions. Water Res 22:1571–1575. doi: 10.1016/0043-1354(88)90170-4 CrossRefGoogle Scholar
  38. Phillips BL, Casey WH, Crawford SN (1997) Solvent exchange in AlFx(H2O)(6−x)(3−x) (aq) complexes: ligand-directed labilization of water as an analogue for ligand-induced dissolution of oxide minerals. Geochim Cosmochim Acta 61:3041–3049. doi: 10.1016/S0016-7037(97)00149-X CrossRefGoogle Scholar
  39. Phillips BL, Casey WH, Karlsson M (2000) Bonding and reactivity at oxide mineral surfaces from model aqueous complexes. Nature 404:379–382CrossRefGoogle Scholar
  40. Pigga JM, Teprovich JA Jr, Flowers RA, Antonio MR, Liu T (2010) Selective monovalent cation association and exchange around keplerate polyoxometalate macroanions in dilute aqueous solutions. Langmuir 26:9449–9456CrossRefGoogle Scholar
  41. Rosenqvist J, Persson P, Sjoberg S (2002) Protonation and charging of nanosized gibbsite (alpha-Al(OH)(3)) particles in aqueous suspension. Langmuir 18:4598–4604. doi: 10.1021/La015753t CrossRefGoogle Scholar
  42. Rustad JR (2005) Molecular dynamics simulation of the titration of polyoxocations in aqueous solution. Geochim Cosmochim Acta 69:4397–4441CrossRefGoogle Scholar
  43. Selmani A, Lützenkirchen J, Kallay N, Preocanin T (2014) Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems. J Phys Condens Matter 26:244104. doi: 10.1088/0953-8984/26/24/244104 CrossRefGoogle Scholar
  44. Sigg LM (1980) Die Wechselwirkung von Anionen und schwachen Säuren mit a-FeOOH(Goethit) in wässriger Lösung. doi: 10.3929/ethz-a-000191823
  45. Sigg L, Stumm W (1981) The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface. Colloid Surface 2:101–117. doi: 10.1016/0166-6622(81)80001-7 CrossRefGoogle Scholar
  46. Sprycha R (1984) Surface charge and adsorption of background electrolyte ions at anatase/electrolyte interface. J Colloid Interface Sci 102:173–185CrossRefGoogle Scholar
  47. Stumm W, Kummert R, Sigg L (1980) A ligand-exchange model for the adsorption of inorganic and organic-ligands at hydrous oxide interfaces. Croat Chem Acta 53:291–312Google Scholar
  48. Venema P, Hiemstra T, Weidler PG, van Riemsdijk WH (1998) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: application to iron (hydr)oxides. J Colloid Interf Sci 198:282–295. doi: 10.1006/jcis.1997.5245 CrossRefGoogle Scholar
  49. Waychunas G et al (2005) Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate an hematite (0001) and (10–12). Anal Bioanal Chem 383:12–27. doi: 10.1007/s00216-005-3393-z CrossRefGoogle Scholar
  50. Waychunas G et al (2006) Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate on hematite (0001) and (10–12). Anal Bioanal Chem 386:2255. doi: 10.1007/s00216-006-0922-3 CrossRefGoogle Scholar
  51. Wehrli B, Wieland E, Furrer G (1990) Chemical mechanisms in the dissolution kinetics of minerals; the aspect of active sites. Aquat Sci 52:3–31CrossRefGoogle Scholar
  52. Westall JC (1982) FITEQL2.0—a program for the determination of chemical equilibrium constants from experimental data. Department of Chemistry, Oregon State University, Corvallis, ORGoogle Scholar
  53. Yamaguchi N, Hiradate S, Mizoguchi M, Miyazaki T (2004) Disappearance of aluminum tridecamer from hydroxyaluminum solution in the presence of humic acid. Soil Sci Soc Am J 68:1838–1843CrossRefGoogle Scholar
  54. Yu P, Lee AP, Phillips BL, Casey WH (2003) Potentiometric and F-19 nuclear magnetic resonance spectroscopic study of fluoride substitution in the GaAl12 polyoxocation: implications for aluminum (hydr)oxide mineral surfaces. Geochim Cosmochim Acta 67:1065–1080CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Johannes Lützenkirchen
    • 1
    Email author
  • Remi Marsac
    • 1
  • William H. Casey
    • 2
  • Gerhard Furrer
    • 3
  • Tom Kupcik
    • 1
  • Patric Lindqvist-Reis
    • 1
  1. 1.Institut für Nukleare Entsorgung (INE)Karlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Institute of Biogeochemistry and Pollutant Dynamics (IBP)ETH ZurichZurichSwitzerland
  3. 3.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations