Advertisement

Aquatic Geochemistry

, Volume 21, Issue 2–4, pp 313–329 | Cite as

Chromium Speciation in Solid Waste Material and Eluates by X-Ray Absorption Spectroscopy and Ion Chromatography

  • Markus Delay
  • Stefan Mangold
  • Reinhard Sembritzki
  • Fritz H. Frimmel
Article

Abstract

The tremendous generation of solid waste material is a worldwide problem. Apart from avoidance of waste materials, their reuse is a main goal of modern waste management. Reuse of waste materials demands adequate risk assessment and reliable quantification methods considering the release potential of harmful compounds. In this context, due to its cancerogenity, hexavalent chromium (Cr(VI)) is of high ecotoxicological, human toxicological and environmental relevance. In this contribution, we focus on the speciation of chromium in two representative solid waste materials (demolition waste material, DWM; municipal waste incineration product, MWIP) and eluates obtained after leaching. For chromium speciation, X-ray absorption spectroscopy (XAS) and ion chromatography coupled with inductively coupled plasma optical emission spectrometry (IC/ICP-OES) were applied. It could be observed that in spite of relatively low contents of Cr(VI) in both solid materials (DWM: 16 ± 1 mg/kg, MWIP: 67 ± 5; aqua regia digestion), environmentally relevant concentrations of Cr(VI) were released from the materials as revealed by batch and column leaching experiments. In particular, threshold values for Cr(VI) of the German Federal Soil Protection and Contaminated Sites Ordinance were significantly exceeded. Application of XAS allowed both the determination of mobilizable Cr(VI) directly in the solid materials and in the alkaline eluates, even at concentrations below 500 µg/L. The results obtained were in agreement with data of leaching tests and with IC/ICP-OES measurements. IC/ICP-OES enabled a rapid, well-reproducible and sensitive quantification of Cr(VI) in the eluates in the lower µg/L range. The presented combination of independent analytical methods and mutual validation is highly powerful and is a valuable contribution for risk assessment of waste material. The principle of the approach can be used for the investigation of other solid materials and elements and their assessment.

Keywords

Chromium speciation Chromium (VI) Waste material X-ray absorption spectroscopy Ion chromatography Leaching tests Risk assessment 

Notes

Acknowledgments

The authors thank the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) for funding within the Joint Research Project “Percolation Water Prognosis” (“Sickerwasserprognose”) (promotional reference: 02WP0089 and 02WP0516). We also thank the Ångström Light Source Karlsruhe (ANKA) for funding (projects ENV-50, ENV-72 and MI-9).

Supplementary material

10498_2014_9249_MOESM1_ESM.doc (140 kb)
Supplementary material 1 (DOC 140 kb)

References

  1. Ball JW, Nordstrom DK (1998) Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J Chem Eng Data 43:895–918CrossRefGoogle Scholar
  2. Banks MK, Schwab AP, Henderson C (2006) Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264CrossRefGoogle Scholar
  3. BBodSchV (1999) Federal soil protection and contaminated sites ordinance (Bundes-Bodenschutz- und Altlastenverordnung—BBodSchV) of July 12, 1999Google Scholar
  4. Beaumont JJ et al (2008) Cancer mortality in a Chinese population exposed to hexavalent chromium in drinking water. Epidemiology 19:12–23CrossRefGoogle Scholar
  5. Berger W, Kalbe U, Eckhardt J, Fischer H, Jansky H-J (2004) Aufbereitung von Referenzmaterialien zur Untersuchung der Eluierbarkeit von Schadstoffen. Aufbereitungstechnik 45:37–43Google Scholar
  6. Berger W, Kalbe U, Eckardt J (2005) Fachlicher Schlussbericht des FuE-Vorhabens „Aufbereitung von Referenzmaterialien für die Ableitung von Verfahren zur Sickerwasserprognose“. Bundesanstalt für Materialforschung und -prüfung (BAM), BerlinGoogle Scholar
  7. Brookins DG (1988) Eh-pH diagrams for geochemistry. Springer, BerlinCrossRefGoogle Scholar
  8. Buerge IJ, Hug SJ (1998) Influence of organic ligands on chromium(VI) reduction by iron(II). Environ Sci Technol 32:2092–2099CrossRefGoogle Scholar
  9. Chen J-C, Wey M-Y, Chiang B-C, Hsieh S-M (1998) The simulation of hexavalent chromium formation under various incineration conditions. Chemosphere 36:1553–1564CrossRefGoogle Scholar
  10. Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451CrossRefGoogle Scholar
  11. Delay M (2010) Dynamische versus statische Elutionsversuche: Ein Beitrag zur Beurteilung der Wiederverwertbarkeit von Abfallmaterialien. Dissertation, Karlsruhe Institute of Technology (KIT). Free access: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019070
  12. Delay M, Lager T, Schulz HD, Frimmel FH (2007) Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Manag 27:248–255CrossRefGoogle Scholar
  13. DIN ISO 10390 (2005) Soil quality—determination of pH (ISO 10390:2005). DIN German Institute for StandardizationGoogle Scholar
  14. DIN ISO 11466 (1997) Soil quality—extraction of trace elements soluble in aqua regia (ISO 11466:1995). DIN German Institute for StandardizationGoogle Scholar
  15. DIN EN 1233 (1996) Water quality: determination of chromium—Atomic absorption spectrometric methods; German version EN 1233:1996. DIN German Institute for StandardizationGoogle Scholar
  16. DIN 38414-4 (1984) German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of leachability by water (S 4). DIN German Institute for StandardizationGoogle Scholar
  17. DIN 38405-24 (1987) German standard methods for the examination of water, waste water and sludge; anions (group D); photometric determination of chromium(VI) using 1,5-diphenylcarbonohydrazide (D 24). DIN German Institute for StandardizationGoogle Scholar
  18. DIN EN ISO 10304-3 (1997) Water quality: determination of dissolved anions by liquid chromatography of ions—Part 3: determination of chromate, iodide, sulfite, thiocyanate and thiosulfate (ISO 10304-3:1997); German version EN ISO 10304-3:1997. DIN German Institute for StandardizationGoogle Scholar
  19. DIN EN ISO 11885 (2009) Water quality: determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (ISO 11885:2007); German version EN ISO 11885:2009. DIN German Institute for StandardizationGoogle Scholar
  20. DIN EN ISO 15586 (2004) Water quality: determination of trace elements using atomic absorption spectrometry with graphite furnace (ISO 15586:2003); German version EN ISO 15586:2003. DIN German Institute for StandardizationGoogle Scholar
  21. DIN EN ISO 17294-2 (2005) Water quality: application of inductively coupled plasma mass spectrometry (ICP-MS)—Part 2: determination of 62 elements (ISO 17294-2:2003); German version EN ISO 17294-2:2004. DIN German Institute for StandardizationGoogle Scholar
  22. DIN EN ISO 18412 (2007) Water quality—determination of chromium(VI)—photometric method for weakly contaminated water (ISO 18412:2005); German version EN ISO 18412:2006. DIN German Institute for StandardizationGoogle Scholar
  23. Directive 2011/65/EU (2011) Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment 2011, European Parliament, Council of the European UnionGoogle Scholar
  24. Directive 98/83/EC (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Council of the European UnionGoogle Scholar
  25. Dunemann L, Begerow J (1995) Kopplungstechniken zur Elementspeziesanalytik. VCH Verlagsgesellschaft mbH, WeinheimCrossRefGoogle Scholar
  26. Federal Environmental Agency (2002) Environmental Data Germany 2002. Federal Environmental Agency, BerlinGoogle Scholar
  27. Grafe M, Donner E, Collins RN, Lombi E (2014) Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review. Anal Chim Acta 822:1–22CrossRefGoogle Scholar
  28. Hahn-Weinheimer P, Hirner A, Weber-Diefenbach K (1995) Röntgenfluoreszenzanalytische Methoden: Grundlagen und praktische Anwendung in den Geo-, Material- und Umweltwissenschaften. Vieweg, BraunschweigCrossRefGoogle Scholar
  29. Iden SC, Delay M, Frimmel FH, Durner W (2008) Assessing contaminant mobilization from waste materials: application of Bayesian parameter estimation to batch extraction tests at varying liquid-to-solid ratios. Environ Sci Technol 42:3717–3723CrossRefGoogle Scholar
  30. ISO Guide 30 AMD 1 (2008) Terms and definitions used in connection with reference materials—Amendment 1: revision of definitions for reference material and certified reference material. ISO International Organization for StandardizationGoogle Scholar
  31. Kalbe U, Berger W, Eckardt J, Simon F-G (2008) Evaluation of leaching and extraction procedures for soil and waste. Waste Manag 28:1027–1038CrossRefGoogle Scholar
  32. Kartam N, Al-Mutairi N, Al-Ghusain I, Al-Humoud J (2004) Environmental management of construction and demolition waste in Kuwait. Waste Manag 24:1049–1059CrossRefGoogle Scholar
  33. Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. VCH, WeinheimGoogle Scholar
  34. Kerger BD, Paustenbach DJ, Corbett GE, Finley BL (1996) Absorption and elimination of trivalent and hexavalent chromium in humans following ingestion of a bolus dose in drinking water. Toxicol Appl Pharmacol 141:145–158CrossRefGoogle Scholar
  35. Kerger BD, Finley BL, Corbett GE, Dodge DG, Paustenbach DJ (1997) Ingestion of chromium(VI) in drinking water by human volunteers: absorption, distribution, and excretion of single and repeated doses. J Toxicol Environ Health A 50:67–95CrossRefGoogle Scholar
  36. Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46CrossRefGoogle Scholar
  37. Kirk DW, Chan CCY, Marsh H (2002) Chromium behavior during thermal treatment of MSW fly ash. J Hazard Mater 90:39–49CrossRefGoogle Scholar
  38. KrWG (2012) Act for promoting closed substance cycle waste management and ensuring environmentally compatible waste disposal (Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen, Kreislaufwirtschaftsgesetz—KrWG) of February 24 2012 (Federal Law Gazette I, p. 212)Google Scholar
  39. Lager T, Delay M, Karius V, Hamer K, Frimmel FH, Schulz HD (2006) Determination and quantification of the release of inorganic contaminants from municipal waste incineration ash. Acta Hydrochim Hydrobiol 34:73–85CrossRefGoogle Scholar
  40. Mangold S (2003) Untersuchung und Validierung sequenzieller Extraktionsverfahren durch X-ray Absorption Fine Structure Spectroscopy (XAFS). Dissertation, Technische Universität Hamburg-HarburgGoogle Scholar
  41. Marguí E, Fontàs C, Toribio M, Guillem M, Hidalgo M, Queralt I (2010) Determination of water-soluble Hexavalent chromium in clinker samples by wavelength-dispersive X-ray fluorescence spectrometry after concentration in activated layers. Appl Spectrosc 64:547–551CrossRefGoogle Scholar
  42. Marqués MJ, Salvador A, Morales-Rubio A, de la Guardia M (2000) Chromium speciation in liquid matrices: a survey of the literature. Fresenius J Anal Chem 367:601–613CrossRefGoogle Scholar
  43. Pantsar-Kallio M, Reinikainen S-P, Oksanen M (2001) Interactions of soil components and their effects on speciation of chromium in soils. Anal Chim Acta 439:9–17CrossRefGoogle Scholar
  44. Perkins RB, Palmer CD (2000) Solubility of Ca6[Al(OH)6]2(CrO4)3 26H2O, the chromate analog of ettringite; 5–75 °C. Appl Geochem 15:1203–1218CrossRefGoogle Scholar
  45. Proctor DM, Otani JM, Finley BL, Paustenbach DJ, Bland JA, Speizer N, Sargent EV (2002) Is hexavalent chromium carcinogenic via ingestion? A weight-of-evidence review. J Toxicol Environ Health A 65:701–746CrossRefGoogle Scholar
  46. Prokisch J, Katz SA, Kovacs B, Gyori Z (1997) Speciation of chromium from industrial wastes and incinerated sludges. J Chromatogr A 774:363–371CrossRefGoogle Scholar
  47. Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23CrossRefGoogle Scholar
  48. Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25:807–816CrossRefGoogle Scholar
  49. Rinehart TL, Schulze DG, Bricka RM, Bajt S, Blatchley ER (1997) Chromium leaching vs. oxidation state for a contaminated solidified/stabilized soil. J Hazard Mater 52:213–221CrossRefGoogle Scholar
  50. Saleh FY, Parkerton TF, Lewis RV, Huang JH, Dickson KL (1989) Kinetics of chromium transformations in the environment. Sci Total Environ 86:25–41CrossRefGoogle Scholar
  51. Salem H (1989) The chromium paradox in modern life: introductory address to the symposium. Sci Total Environ 86:1–3CrossRefGoogle Scholar
  52. Sedman RM, Beaumont J, McDonald TA, Reynolds S, Krowech G, Howd R (2006) Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water. J Environ Sci Health C 24:155–182CrossRefGoogle Scholar
  53. TrinkwV (2013) Ordinance on the quality of drinking water intended for human consumption (Drinking Water Ordinance, Trinkwasserverordnung—TrinkwV), August 2013 (Federal Law Gazette I, p. 2977)Google Scholar
  54. Wahlström M, Laine-Ylijoki J, Maattanen A, Luotojarvi T, Kivekas L (2000) Environmental quality assurance system for use of crushed mineral demolition wastes in road constructions. Waste Manag 20:225–232CrossRefGoogle Scholar
  55. Wang K-S, Sun C-J, Liu C-Y (2001) Effects of the type of sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste incinerator fly ash. Waste Manag 21:85–91CrossRefGoogle Scholar
  56. Wetterhahn KE, Hamilton JW (1989) Molecular basis of hexavalent chromium carcinogenicity: effect on gene expression. Sci Total Environ 86:113–129CrossRefGoogle Scholar
  57. Wetterhahn K, Hamilton J, Aiyar J, Borges K, Floyd R (1989) Mechanism of chromium(VI) carcinogenesis. Biol Trace Elem Res 21:405–411CrossRefGoogle Scholar
  58. World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Markus Delay
    • 1
  • Stefan Mangold
    • 2
  • Reinhard Sembritzki
    • 1
  • Fritz H. Frimmel
    • 1
  1. 1.Chair of Water Chemistry and Water Technology, Engler-Bunte-InstitutKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.ANKA Synchrotron Radiation FacilityKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations