Aquatic Geochemistry

, Volume 19, Issue 5–6, pp 591–626 | Cite as

Modelling Estuarine Biogeochemical Dynamics: From the Local to the Global Scale

  • Pierre RegnierEmail author
  • Sandra Arndt
  • Nicolas Goossens
  • Chiara Volta
  • Goulven G. Laruelle
  • Ronny Lauerwald
  • Jens Hartmann
Original Paper


Estuaries act as strong carbon and nutrient filters and are relevant contributors to the atmospheric CO2 budget. They thus play an important, yet poorly constrained, role for global biogeochemical cycles and climate. This manuscript reviews recent developments in the modelling of estuarine biogeochemical dynamics. The first part provides an overview of the dominant physical and biogeochemical processes that control the transformations and fluxes of carbon and nutrients along the estuarine gradient. It highlights the tight links between estuarine geometry, hydrodynamics and scalar transport, as well as the role of transient and nonlinear dynamics. The most important biogeochemical processes are then discussed in the context of key biogeochemical indicators such as the net ecosystem metabolism (NEM), air–water CO2 fluxes, nutrient-filtering capacities and element budgets. In the second part of the paper, we illustrate, on the basis of local estuarine modelling studies, the power of reaction-transport models (RTMs) in understanding and quantifying estuarine biogeochemical dynamics. We show how a combination of RTM and high-resolution data can help disentangle the complex process interplay, which underlies the estuarine NEM, carbon and nutrient fluxes, and how such approaches can provide integrated assessments of the air–water CO2 fluxes along river–estuary–coastal zone continua. In addition, trends in estuarine biogeochemical dynamics across estuarine geometries and environmental scenario are explored, and the results are discussed in the context of improving the modelling of estuarine carbon and CO2 dynamics at regional and global scales.


Reactive-transport models Land–ocean continuum Carbon cycle CO2 Estuaries Biogeochemistry 



This manuscript has greatly benefited from insightful comments from Wei-Jun Cai and the editorial work of Eric De Carlo. The research leading to these results has received funding from the government of the Brussels-Capital Region (Brains Back to Brussels award to P. Regnier), by the European Union’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 283080, project GEOCARBON, by the German Science Foundation DFG (DFG-project HA 4472/6-1) and the Cluster of Excellence “CliSAP” (DFG, EXC177), Universität Hamburg. S. Arndt acknowledges funding by the National Environmental Research Council (NERC; Grant Number NE/I021322/1), N. Goossens is funded by a FRIA (Fonds de la Recherche Scientifique-FNRS) Grant.

Supplementary material

10498_2013_9218_MOESM1_ESM.doc (185 kb)
Supplementary material 1 (DOC 185 kb)


  1. Abril G, Riou SA, Etcheber H, Frankignoulle M, de Wit R, Middelburg JJ (2000) Transient, tidal time-scale, nitrogen transformations in an estuarine turbidity maximum-fluid mud system (The Gironde, South-West France). Estuar Coast Shelf Sci 50:703–715Google Scholar
  2. Abril G, Nogueira M, Etcheber H, Cabeçadas G, Lemaire E, Brogueira MJ (2002) Behaviour of organic carbon in nine contrasting European estuaries. Estuar Coast Shelf Sci 54:241–262Google Scholar
  3. Alin SR, Rasera MFFL, Salimon CI, Richey JE et al (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res Biogeosci 116. doi: 10.1029/2010JG001398
  4. Amann T, Weiss A, Hartmann J (2012) Carbon dynamics in the freshwater part of the Elbe estuary, Germany: implications of improving water quality. Estuar Coast Shelf Sci 107:112–121Google Scholar
  5. Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or sink of atmospheric CO2? Front Ecol Environ 2:348–353Google Scholar
  6. Arino O, Gross D, Ranera F, Bourg L, Leroy M, Bicheron P, Latham J, Di Gregorio A, Brockman C, Witt R, Defourny P, Vancutsem C, Herold M, Sambale J, Achard F, Durieux L, Plummer S, Weber J-L (2007) GlobCover: ESA service for global land cover from MERIS. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS). IEEE International, Barcelona, pp 2412–2415Google Scholar
  7. Arndt S, Regnier P (2007) A model for the benthic-pelagic coupling of silica in estuarine ecosystem: sensitivity analysis and system scale simulation. Biogeosciences 4:331–352Google Scholar
  8. Arndt S, Vanderborght JP, Regnier P (2007) Diatom growth response to physical forcing in a macro tidal estuary: coupling hydrodynamics, sediment transport, and biogeochemistry. J Geophys Res 112. doi:  10.1029/2006JC003581
  9. Arndt S, Regnier P, Vanderborght JP (2009) Seasonally-resolved nutrient filtering capacities and export fluxes in a macrotidal estuary. J Mar Syst 78:42–58Google Scholar
  10. Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C (2011) Nutrient dynamics and phytoplankton development along an estuary-coastal zone continuum: a model study. J Mar Syst 84:49–66Google Scholar
  11. Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost R, Regnier P (2013) Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev 123:53–86Google Scholar
  12. Aston SR (1983) Silicon geochemistry and biogeochemistry. Academic Press, LondonGoogle Scholar
  13. Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, Gombos D (2011) A cross-calibrated multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteor Soc 92:157–174Google Scholar
  14. Baklouti M, Chevalier C, Bouvy M, Corbin D, Pagano M, Troussellier M, Arfi R (2011) A study of plankton dynamics under osmotic stress in the Senegal River Estuary, West Africa, using a 3D mechanistic model. Ecol Model 222:2704–2721Google Scholar
  15. Benoit P, Gratton Y, Mucci A (2006) Modeling of dissolved oxygen levels in the bottom waters of the Lower St. Lawrence Estuary: coupling of benthic and pelagic processes. Mar Chem 102:13–32Google Scholar
  16. Benson BB, Krause D Jr (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–637Google Scholar
  17. Beusen AHW, Dekkers ALM, Bouwman AF, Ludwig W, Harrison J (2005) Estimation of global river transport of sediments and associated particulate C, N and P. Global Biogeochem Cycles 19. doi:  10.1029/2005GB002453
  18. Bianchi TS (2007) Biogeochemistry of estuaries. Oxford University Press, OxfordGoogle Scholar
  19. Bianchi TS (2011) The role of terrestrial derived organic carbon in the coastal ocean: a changing paradigm and priming effect. Proc Natl Acad Sci 108:19473–19481Google Scholar
  20. Billen G (1975) Nitrification in the Scheldt Estuary (Belgium and The Netherlands). Estuar Coast Mar Sci 3:79–89Google Scholar
  21. Billen G, Somville M, De Becker E, Servais P (1985) A nitrogen budget of the Scheldt hydrographical basin. Neth J Sea Res 19:223–230Google Scholar
  22. Billen G, Lancelot C, Maybeck M (1991) N, P and Si retention along the aquatic continuum from land to ocean. In: Mantoura RFC, Martin JM, Wollast R (ed) Ocean margin processes in global change. Dahlem workshop reports, Wiley, pp 19–44Google Scholar
  23. Billen G, Garnier J, Ficht A, Cun C (2001) Modeling the response of water quality in the Seine River estuary to human activity in its watershed over the last 50 years. Estuaries 24:977–993Google Scholar
  24. Billen G, Thieu V, Garnier J, Silvestre M (2009) Modelling the N cascade in regional watersheds: the case study of the Seine, Somme and Scheldt rivers. Agric Ecosyst Environ 133:234–246Google Scholar
  25. Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27Google Scholar
  26. Borges AV, Abril G (2011) Carbon dioxide and methane dynamics in estuaries. Treatise Estuar Coast Sci 5:119–161Google Scholar
  27. Borges AV, Frankignoulle M (2002) Aspects of dissolved inorganic carbon dynamics in the upwelling system on the Galician coast. J Mar Syst 32:181–198Google Scholar
  28. Borges AV, Delille B, Schiettecatte LS, Gazeau F, Abril G, Frankignoulle M (2004) Gas transfer velocities of CO2 in three European estuaries (Renders Fjord, Scheldt, and Thames). Limnol Oceanog 49:1630–1641Google Scholar
  29. Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett 32:L14601. doi: 10.1029/2005GL023053 Google Scholar
  30. Bowden KF (1963) The mixing processes in a tidal estuary. Int J Air Water Pollut 7:343–356Google Scholar
  31. Boyle E, Collier R, Dengler AT, Edmond JM, Ng AC, Stallard RF (1974) On the chemical mass-balance in estuaries. Geochim Cosmochim Acta 38:1719–1728Google Scholar
  32. Boynton WR, Garber JH, Summers R, Kemp WM (1995) Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18:285–314Google Scholar
  33. Brion N, Billen G (1998) A re-assessment of H14CO−3 incorporation method for measuring autotrophic nitrification and its use to estimate nitrifying biomasses. Rev Sci Eau 11:283–302Google Scholar
  34. Brock T (1981) Calculating solar radiation for ecological studies. Ecol Model 14:1–19Google Scholar
  35. Cai WJ (2011) Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration. Annu Rev Mar Sci 3:123–145Google Scholar
  36. Cai WJ, Wang Y (1998) The chemistry, fluxes and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol Oceanogr 43:657–668Google Scholar
  37. Cai WJ, Pomeroy LR, Moran MA, Wang Y (1999) Oxygen and carbon dioxide mass balance in the estuarine/intertidal marsh complex of five rivers in the Southeastern US. Limnol Oceanogr 44:639–649Google Scholar
  38. Cai WJ, Dai M, Wang Y, Zhai W, Huang T, Chen S et al (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont Shelf Res 24:1301–1319Google Scholar
  39. Cai WJ, Guo X, Chen CTA, Dai M, Zhang L, Zhai W, Lohrenz SE, Yin K et al (2008) A comparative overview of weathering intensity and HCO3-flux of the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont Shelf Res 28:1538–1549Google Scholar
  40. Canuel EA, Cammer SS, McIntosh A, Pondell C (2012) Climate change impact on the organic carbon cycle at the land–ocean interface. Annu Rev Earth Planet Sci 40:685–711Google Scholar
  41. Cerco CF (2000) Phytoplankton kinetics in the Chesapeake Bay eutrophication model. Water Qual Ecosyst Model 1:5–49Google Scholar
  42. Cerco CF, Cole T (1993) Three-dimensional eutrophication model of Chesapeake Bay. J Environ Eng 119:10061025Google Scholar
  43. Cerco CF, Noel MR (2004) Process-based primary production modelling in Chesapeake Bay. Mar Ecol Prog Ser 282:45–58Google Scholar
  44. Cerco CF, Tillman D, Hagy JD (2010) Coupling and comparing a spatially- and temporally-detailed eutrophication model with and ecosystem network model: an initial application to Chesapeake Bay. Environ Model Softw 25:562–572Google Scholar
  45. Chen CTA, Liu KK, MacDonald R (2003) Continental margin exchanges. In: Fasham MJR (ed) Ocean biogeochemistry: a synthesis of the joint global ocean flux study (JGOFS). Springer, Berlin, pp 53–97Google Scholar
  46. Cloern JE (1996) Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Rev Geophys 34:127–168Google Scholar
  47. Cloern JE (1999) The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat Ecol 33:3–16Google Scholar
  48. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253Google Scholar
  49. Cloern JE, Alpine BE, Cole RL, Wong J, Arthur JF, Ball MD (1983) River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary. Estuar Coast Shelf Sci 16:415–429Google Scholar
  50. Compton J, Mallinson D, Glenn CR, Filippelli G, Follmi K, Shields G, Zanin Y (2000) Variations in the global phosphorus cycle. Marine authigenesis: from global to microbial. SEPM Special Publication 66:21–33Google Scholar
  51. Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42:774–777Google Scholar
  52. Corine Land Cover data set.
  53. Cugier P, Billen G, Guillaud JF, Menesguen A (2005) Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. J Hydrol 304:381–396Google Scholar
  54. Dai M, Guo X, Zhai W, Yuan L, Wang B, Wang L, Cai P, Tang T, Cai WJ (2006) Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Mar Chem 102:159–169Google Scholar
  55. Dai M, Wang L, Guo X, Zhai W, Li Q, He B, Kao SJ (2008) Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China. Biogeosciences 5:1227–1244Google Scholar
  56. Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146Google Scholar
  57. de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organism and their role in kerogen, coal and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry principles and applications. Plenum Publishing Corp, New York, pp 23–72Google Scholar
  58. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732Google Scholar
  59. Desmit X, Vanderborght JP, Regnier P, Wollast R (2005) Control of phytoplankton production by physical forcing in a strongly tidal, well-mixed estuary. Biogeosciences 2:205–218Google Scholar
  60. Dettman EH (2001) Effect of water residence time on annual export and denitrification of nitrogen in estuaries: a model analysis. Estuaries 24:481–490Google Scholar
  61. Ducklow HW, McAllister SL (2004) The biogeochemistry of carbon dioxide in the coastal oceans. In: Robinson AR, Brink K (eds) The Sea. Harvard University Press, Cambridge, pp 193–225Google Scholar
  62. Dürr HH, Laruelle GG, van Kempen CM, Slomp CP, Meybeck M, Middlekoop H (2011) Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuaries Coasts 34:441–458Google Scholar
  63. Dyer KR (1995) Sediment transport in estuaries. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Elsevier, Amsterdam, pp 423–449Google Scholar
  64. Dyer KR (2001) Suspended sediment transport in the Humber estuary. In: Huntley DA, Leeks GJL, Walling DE (eds) Land–Ocean Interaction: Measuring and Modelling Fluxes from River Basins to Coastal Seas. IAWQ, London, pp 169–183Google Scholar
  65. Elliott M, McLusky DS (2002) The need for definitions in understanding estuaries. Estuar Coast Shelf Sci 55:815–827Google Scholar
  66. Even S, Billen G, Bacq N, Thery S, Ruelland D, Garnier J, Cugier P, Poulin M, Blanc S, Lamy F, Paffoni C (2007a) New tools for modelling water quality of hydrosystems: an application in the Seine River basin in the frame of the Water Framework Directive. Sci Total Environ 375:274–291Google Scholar
  67. Even S, Thouvenin B, Bacq N, Billen G, Garnier J, Guezennec L, Blanc S, Ficht A, Le Hir P (2007b) An integrated modelling approach to forecast the impact of human pressure in the Seine estuary. Hydrobiol 588:13–29Google Scholar
  68. Eyre BD (2000) A regional evaluation of nutrient transformation and phytoplankton growth in nine river dominated sub-tropical East Australian estuaries. Mar Ecol Prog Ser 205:61–83Google Scholar
  69. Eyre BD, Balls PW (1999) A comparative study of nutrient processes along the salinity gradient of tropical and temperate estuaries. Estuar Coast 22:313–326Google Scholar
  70. Eyre BD, McKee L (2002) Carbon, nitrogen and phosphorus budgets for a shallow sub-tropical coastal embayment (Moreton Bay, Australia). Limnol Oceanogr 47:1043–1055Google Scholar
  71. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT et al (2000) The Global Carbon Cycle: A test of our Knowledge of Earth as a System. Science 290. doi:  10.1126/science2905490291
  72. Fekete BM, Vörösmarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob Biogeochem Cycles 16:815–827Google Scholar
  73. Fekete BM, Wisser D, Kroeze C, Mayorga E, Bouwman L et al (2010) Millennium Ecosystem Assessment scenario drivers (1970–2050): climate and hydrological alterations. Glob Biogeochem Cycles 24:815–827Google Scholar
  74. Fisher TR, Hardings LW Jr, Stanley DW, Ward LG (1988) Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuar Coast Shelf Sci 27:61–93Google Scholar
  75. Follows MJ, Dutkiewicz S, Ito T (2006) On the solution of the carbonate system in ocean biogeochemistry models. Ocean Model 12:290–301Google Scholar
  76. Frankignoulle M, Bourge I, Wollast R (1996) Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt). Limnol Oceanogr 41:365–369Google Scholar
  77. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Theate JM (1998) Carbon dioxide emission from European estuaries. Science 282:434–436Google Scholar
  78. Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545Google Scholar
  79. Frossard E, Brossard M, Hedley MJ, Mertherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus cycling in terrestrial and aquatic ecosystems: a global perspective. SCOPE/Wiley, New York, pp 107–137Google Scholar
  80. Garnier J, Billen G, Costa M (1995) Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observations and modeling. Limnol Oceanogr 40:750–765Google Scholar
  81. Garnier J, Billen G, Cebron A (2007) Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of waste release on oxygenation and N2O emission. Hydrobiologia 588:291–302Google Scholar
  82. Garnier J, Billen G, Even S, Etcheber H, Servais P (2008) Organic matter dynamics and budgets in the turbidity maximum zone of the Seine Estuary (France). Estuar Coast Shelf Sci 77:150–162Google Scholar
  83. Gattuso JP, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434Google Scholar
  84. Gazeau F, Smith SV, Gentili B, Frankignoulle M, Gattuso JP (2004) The European coastal zone: characterization and first assessment of ecosystem metabolism. Estuar Coast Shelf Sci 60:673–694Google Scholar
  85. Gazeau F, Gattuso JP, Middelburg JJ, Brion N, Schiettecatte LS (2005) Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary). Estuaries 28:868–883Google Scholar
  86. GESAMP (1987) Land/Sea boundary flux of contaminants: contributions from rivers. Rep Stud GESAMPGoogle Scholar
  87. Giese BS, Jay DA (1989) Modelling tidal energetics of the Columbia River estuary. Estuar Coast Shelf Sci 29:549–571Google Scholar
  88. Gordon DC Jr, Boudreau PR, Mann KH, Ong JE et al (1996) LOICZ biogeochemical modelling guidelines. LOICZ reports and studies no 5, pp 1–96Google Scholar
  89. Guan W, Wong L, Xu D (2001) Modeling nitrogen and phosphorus cycles and dissolved oxygen in the Zhujiang estuary. II. Model results. Acta Oceanol Sin 20:505–514Google Scholar
  90. Guéguen C, Laodong G, Deli W, Noriyuki T, Chin-Chang H (2006) Chemical characteristics and origin of dissolved organic matter in the Yukon River. Biogeochemistry 77:139–155Google Scholar
  91. Gypens N, Lacroix G, Lancelot C, Borges AV (2011) Seasonal and inter-annual variability of air-sea CO2 fluxes and seawater carbonate chemistry in the Southern North Sea. Prog Oceanogr 88:59–77Google Scholar
  92. Gypens N, Delhez E, Vanhoutte-Brunier A, Burton S, Thieu V, Passy P, Liu Y, Callens J, Rousseau V, Lancelot C (2012) Modelling phytoplankton succession and nutrient transfer along the Scheldt estuary (Belgium, The Netherlands). J Mar Syst. doi: 10.1016/j.jmarsys.2012.10.006
  93. Haag D, Kaupenjohann M (2000) Biogeochemical models in the environmental science. Int J Phylosophy Chem 6:117–142Google Scholar
  94. Hanley N, Faichney R, Munro A, Shortle JS (1998) Economic and environmental modelling for pollution control in an estuary. J Environ Manag 52:211–225Google Scholar
  95. Harding LWJ, Meeson BW, Fisher TRJ (1986) Phytoplankton production in two east coast estuaries: photosynthesis-light functions and patterns of carbon assimilation in Chesapeake and Delaware Bays. Estuar Coast Shelf Sci 23:773–806Google Scholar
  96. Hartmann J, Kempe S (2008) What is the maximum potential for CO2 sequestration by stimulated weathering on the global scale? Naturwissenschaften 95:1159–1164Google Scholar
  97. Hartmann J, Lauerwald R, Moosdorf N, Amann T, Weiss A (2011) GLORICH: GLobal River and estuary CHemical database. ASLO, San JuanGoogle Scholar
  98. Hedges JI, Keil RG (1999) Organic geochemical perspectives on estuarine processes: sorption reactions and consequences. Mar Chem 65:55–65Google Scholar
  99. Hedges JI, Eglinton G, Hatcher PG, Kirchman DL et al (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958Google Scholar
  100. Heip C, Herman PMJ (1995) Major biological processes in European tidal estuaries: a synthesis of the JEEP-92 Project. Hydrobiologia 311:1–7Google Scholar
  101. Hofmann AF, Soetaert K, Middelburg JJ (2008a) Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences 5:981–1006Google Scholar
  102. Hofmann AF, Meysman FJR, Soetaert K, Middelburg JJ (2008b) A step-by-step procedure for pH model construction in aquatic systems. Biogeosciences 5:227–251Google Scholar
  103. Horrevoets AC, Savenije HHG, Schuurman JN, Graas S (2004) The influence of river discharge on tidal damping in alluvial estuaries. J Hydrol 294:213–228Google Scholar
  104. Howarth RW, Jensen H, Marino R, Postma H (1995) Transport to and processing of P in near-shore and oceanic waters. In: Tiessen H (ed) Phosphorus in the global environment transfers, cycles and management SCOPE 54. Wiley, Chichester, pp 323–345Google Scholar
  105. Jay DA, Giese BS, Sherwood CR (1990) Energetics and sedimentary processes in the Columbia River estuary. Prog Oceanogr 25:157–174Google Scholar
  106. Jiang LQ, Cai WJ, Wang Y (2008) A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnol Oceanogr 53:2603–2615Google Scholar
  107. Kaul LW, Froelich PN (1984) Modeling estuarine nutrient geochemistry in a simple system. Geochim Cosmochim Acta 48:1417–1433Google Scholar
  108. Keeney-Kennicutt WL, Presley BJ (1986) The geochemistry of trace metals in the Brazos river estuary. Estuar Coast Shelf Sci 22:459–477Google Scholar
  109. Keil RG, Mayer LM, Quay PD, Richey JE, Hedges JI (1997) Loss of organic matter from riverine particles in deltas. Geochim Cosmochim Acta 61:1507–1511Google Scholar
  110. Ketchum BH (1955) Distribution of coliform bacteria and other pollutant in tidal estuaries. Sewage Ind Wastes 27:1288–1296Google Scholar
  111. Kim S, Cerco CF (2003) Hydrodynamic and eutrophication model of the Chester River estuary and the Eastern Bay estuary.Oceanol 45:67–80Google Scholar
  112. Krom MD, Berner RA (1980) Adsorption of phosphate in anoxic marine sediments. Limnol Oceanogr 25:797–806Google Scholar
  113. Lancelot C, Muylaert K (2011) Trends in estuarine phytoplankton ecology. Treatise Estuar Coast Sci 7:5–15Google Scholar
  114. Lancelot C, Veth C, Mathot S (1991) Modelling ice-edge phytoplankton bloom in the Scotia-Weddell sea sector of the Southern Ocean during spring 1988. J Mar Syst 2:333–346Google Scholar
  115. Lancelot C, Hannon E, Becquevort S, Veth C, de Baar HJW (2000) Modelling phytoplankton blooms and carbon export production in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992. Deep-Sea Res I 47:1621–1662Google Scholar
  116. Langdon C (1988) On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. II. A general review. J Phytoplankton Res 10:1291–1312Google Scholar
  117. Laruelle GG, Regnier P, Ragueneau O, Kempa M, Moriceau B, Ni Longphuirt S, Leynaert A, Thouzeau G, Chauvaud L (2009a) Benthic-pelagic coupling and the seasonal silica cycle in the Bay of Brest (France): new insights from a coupled physical-biological model. Mar Ecol Prog Ser 385:15–32Google Scholar
  118. Laruelle GG, Roubeix P, Sferratore A, Brodherr B, Ciuffa D, Conley DJ, Dürr HH, Garnier J, Lancelot C, Le Thi Phuong Q, Meunier JD, Meybeck M, Michalopoulos P, Moriceau B, Ní Longphuirt S, Loucaides S, Papush L, Presti M, Ragueneau O, Regnier PAG, Saccone L, Slomp CP, Spiteri C, Van Cappellen P (2009b) The global biogeochemical cycle of silicon: role of the land–ocean transition and response to anthropogenic perturbation. Glob Biogeochem Cycles 23. doi:  10.01029/2008GB003267
  119. Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37:1–6Google Scholar
  120. Laruelle GG, Dürr HH, Lauerwald R, Hartmann J, Slomp CP, Goossens N, Regnier PAG (2013) Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol Earth Syst Sci 17:2029–2051Google Scholar
  121. Lauerwald R, Hartmann J, Ludwig W, Moosdorf N (2012) Assessing the non-conservative fluvial fluxes of dissolved organic carbon in North America. J Geophys Res. doi:  10.1029/2011JG001820
  122. Lee DI, Parl CK, Cho HS (2005) Ecological modeling for water quality management of Kwangyang Bay, Korea. J Environ Manag 74:327–337Google Scholar
  123. Lefort S, Gratton Y, Mucci A, Dadou I, Gilbert D (2012) Hypoxia in the Lower St. Lawrence Estuary: how physics controls spatial patterns. J Geophys Res 117:1–14Google Scholar
  124. Lewitus AJ, Kana TM (1995) Light respiration in six estuarine phytoplankton species: contrasts under photoautotrophic and mixotrophic growth conditions. J Phycol 31:754–761Google Scholar
  125. Lichtner PC, Steefel CI, Oelkers EH (1996) Reactive transport in porous media. Reviews in mineralogy, vol 34. The mineralogical society of America, WashingtonGoogle Scholar
  126. Lin J, Xie L, Pietrafesa LJ, Ramus JS, Paerl HW (2007) Water quality gradients across Albemarle-Pamlico estuarine system: seasonal variations and model applications. J Coast Res 23:213–229Google Scholar
  127. Lin J, Xie L, Pietrafesa LJ, Xu H, Woods W, Mallin MA, Durako MJ (2008) Water quality responses to simulated flow and nutrient reductions in the Cape Fear River Estuary and adjacent coastal region, North Carolina. Ecol Model 212:200–217Google Scholar
  128. Lionard M, Muylaert K, Van Gansbeke D, Vyverman W (2005) Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Scheldt river and estuary (Belgium/The Netherlands). Hydrobiologia 540:105–115Google Scholar
  129. Liss PS (1976) Conservative and non-conservative behavior of dissolved constituents during estuarine mixing. In: Burton JD, Liss PS (eds) Estuarine chemistry. Academic Press, London, pp 93–130Google Scholar
  130. Macedo MF, Duarte P (2006) Phytoplankton production modelling in three marine ecosystems: static versus dynamic approach. Ecol Model 190:299–316Google Scholar
  131. Mackenzie FT (2013) Sediments, Diagenesis, and Sedimentary Rocks. Volume 7 of Treatise on Geochemistry. Elsevier, New YorkGoogle Scholar
  132. Mackenzie FT, Lerman A, Andersson AJ (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeoscience 1:11–32Google Scholar
  133. Mackenzie FT, Andersson AJ, Lerman A, Ver LM (2005) Boundary exchanges in the global costal margin: implications for the organic and inorganic carbon cycles. In: Robinson AR, Brink KH (eds) The sea. Harvard University Press, Cambridge, pp 193–225Google Scholar
  134. Mackenzie FT, Lerman A, DeCarlo EH (2011) Coupled C, N, P and O biogeochemical cycling at the land–ocean interface. Treatise Estuar Coast Sci 5:317–342Google Scholar
  135. Maher DT, Eyre BD (2012) Carbon budget for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux. Glob Biogeochem Cycles. doi:  10.1029/2011GB004075
  136. Margvelashvili N, Robson B, Sakov P, Webster IT, Parslow J, Herzfeld M, Andrewartha J (2003) Numerical modelling of hydrodynamics, sediment transport and biogeochemistry in the Fitzroy Estuary. Tech Rep 9. Cooperative Research Centre for Coastal Zone Estuary and Waterway ManagementGoogle Scholar
  137. Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF, Fekete BM, Kroeze C, Van Drecht G (2010) Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ Model Softw 25:837–853Google Scholar
  138. Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Poll 70:443–463Google Scholar
  139. Middelburg JJ, Herman PMJ (2007) Organic matter processing in tidal estuaries. Mar Chem 106:127–147Google Scholar
  140. Mills GL, Quinn JG (1984) Dissolved copper and copper-organic complexes in the Narrangasett Bat estuary. Mar Chem 15:151–172Google Scholar
  141. Moek W, Koene B (1975) Chemistry of dissolved inorganic carbon in estuarine and coastal brackish waters. Esuar Coast Shelf Sci 3:325–336Google Scholar
  142. Moosdorf N, Hartmann J, Lauerwald R, Hagedom B, Kempe S (2011) Atmospheric CO2 consumption by chemical weathering in North America. Geochim Cosmochim Acta 75:7829–7854Google Scholar
  143. Mortazavi B, Iverson RL, Huang W, Lewis GF, Caffrey JM (2000) Nitrogen budgets of Apalachicola Bay, Florida, a bar-built estuary in the northeastern Gulf of Mexico. Mar Ecol Prog Ser 195:1–14Google Scholar
  144. Mulholland PJ (1997) Dissolved organic matter concentration and flux in streams. J North Am Benthol Soc 16:131–141Google Scholar
  145. Muylaert K, Sabbe K, Vyverman W (2009) Changes in phytoplankton diversity and community composition along the salinity gradient of the Scheldt estuary (Belgium/The Netherlands). Estuar Coast Shelf Sci 82:335–340Google Scholar
  146. Nedwell DB, Trimmer M (1996) Nitrogen fluxes through the upper estuary of the Great Ouse, England: the role of the bottom sediments. Mar Ecol Prog Ser 142:273–286Google Scholar
  147. Nielsen K, Nielsen LP, Rasmussen P (1995) Estuarine nitrogen retention independently estimated by the denitrification rate and mass balance methods: a study of Norsminde Fjord, Denmark. Mar Ecol Prog Ser 119:275–283Google Scholar
  148. Nixon SW, Ammerman JW, Atkinson LP et al (1996) The fate of nitrogen and phosphorus at the land–sea margin of the North Atlantic Ocean. Biogeochemistry 35:141–180Google Scholar
  149. Nowicki BL, Requintina E, Van Keuren D, Kelly JR (1997) Nitrogen losses through sediment denitrification in Boston Harbor and Massachusetts Bay. Estuaries 20:626–639Google Scholar
  150. O’Connor DJ, Dobbins WE (1956) Mechanism of reaeration in natural streams. J Sanit Eng Divis ASCE 82(SA6):1–30Google Scholar
  151. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117Google Scholar
  152. Officer CB (1980) Box models revisited. In: Hamilton P, MacDonald KB (eds) Estuarine and wetlands processes. Plenum Press, New York, pp 65–114Google Scholar
  153. Officer CB, Lynch DR (1981) Dynamics of mixing in estuaries. Estuar Coast Shelf Sci 12:525–533Google Scholar
  154. Officer C, Biggs J, Taft J, Cronin L (1984) Chesapeake Bay anoxia: origin, development, and significance. Sci 223:22–27Google Scholar
  155. O’Kane JP (1980) Estuarine water quality management. Pitman, LondonGoogle Scholar
  156. O’Kane JP, Regnier P (2003) A mathematically transparent low-pass filter for tidal estuaries. Estuar Coast Shelf Sci 57:593–603Google Scholar
  157. Paerl HW, Pinckney JL, Fear JM, Peierls BL (1998) Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar Ecol Prog Ser 166:17–25Google Scholar
  158. Paerl HW, Valdes LM, Peierls BL, Adolf JE, Harding LW Jr (2006) Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems. Limnol Oceanogr 51:448–462Google Scholar
  159. Pallud C, Van Cappelen P (2006) Kinetics of microbial sulfate reduction in estuarine sediments. Geochim Cosmochim Acta 70:1148–1162Google Scholar
  160. Parker BB (1991) The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (a review). In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 237–268Google Scholar
  161. Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 107(563):576Google Scholar
  162. Pritchard DW (1974) Dispersion and flushing of pollutants in estuaries. J Hydraul Div 95:115–124Google Scholar
  163. Qin YC, Weng HW (2006) Silicon release and its speciation distribution in the superficial sediments of the Pearl River Estuary, China. Estuar Coast Shelf Sci 67:433–440Google Scholar
  164. Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3:311–314Google Scholar
  165. Rabalais NN, Turner RE (2001) Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coast Estuar Stud 58. doi:  10.1029/CE058
  166. Rabouille C, Mackenzie FT, Ver LM (2001) Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean. Geochim Cosmochim Acta 65:3615–3641Google Scholar
  167. Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317Google Scholar
  168. Raymond PA, Oh NH, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451:449–452Google Scholar
  169. Regnier P, Steefel CI (1999) A high resolution estimate of the inorganic nitrogen flux from the Scheldt estuary to the coastal North Sea during a nitrogen limited algal bloom, spring 1995. Geochim Cosmochim Acta 63:1359–1374Google Scholar
  170. Regnier P, Wollast R, Steefel CI (1997) Long-term fluxes of reactive species in macrotidal estuaries: estimates from a fully transient, multicomponent reaction-transport model. Mar Chem 58:127–145Google Scholar
  171. Regnier P, Mouchet A, Wollast R, Ronday F (1998) A discussion of methods for estimating residual fluxes in strong tidal estuaries. Cont Shelf Res 18:1543–1571Google Scholar
  172. Regnier P, Vanderborght JP, Steefel CI, O’Kane JP (2002) Modeling complex multi-component reactive-transport systems: towards a simulation environment based on the concept of a Knowledge Base. Appl Math Model 26:913–927Google Scholar
  173. Regnier P, Arndt S, Dale AW, LaRowe DE, Mogollon J, Van Cappellen P (2011) Advances in the biogeochemical modeling of the marine methane cycle. Earth Sci Rev 106:105–130Google Scholar
  174. Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens I, Laruelle GG, Lauerwald R, Luyssaert S, Andersson AJ, Arndt S, Arnosti C, Borges AV, Dale AW, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe DE, Leifeld J, Meysman FJR, Munhoven G, Raymond PA, Spahni R, Suntharalingam P, Thullner M (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6(8):597–607Google Scholar
  175. Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27Google Scholar
  176. Robson BJ, Hamilton DP (2004) Three-dimensional modelling of a microcystis bloom event in the Swan River estuary, Western Australia. Ecol Model 174:203–222Google Scholar
  177. Robson BJ, Bukaveckas PA, Hamilton DP (2008) Modelling and mass balance assessment of nutrient retention in a seasonally-owing estuary (Swan River Estuary, Western Australia). Estuar Coast Shelf Sci 76:282–292Google Scholar
  178. Savenije HHG (1992) Rapid assessment technique for salt intrusion in alluvial estuaries. IHE report series 27, DelftGoogle Scholar
  179. Savenije HHG (2005) Salinity and tides in alluvial estuaries, 1st edn. Elsevier, AmsterdamGoogle Scholar
  180. Scavia D, Kelly ELA, Hagy JD III (2006) A simple model for forecasting the effects of nitrogen loads on Chesapeake Bay hypoxia. Estuaries Coast 29:674–684Google Scholar
  181. Schroeder F (1997) Water quality in the Elbe estuary: significance of different processes for the oxygen deficit at Hamburg. Environ Model Assess 2:73–82Google Scholar
  182. Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724Google Scholar
  183. Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorous to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob Biogeochem Cycles 19:75–89Google Scholar
  184. Shen J (2006) Optimal estimation of parameters for a estuarine eutrophication model. Ecol Model 191:521–537Google Scholar
  185. Shiller AM (1996) The effect of recycling traps and upwelling on estuarine chemical flux estimates. Geochim Cosmochim Acta 55:3241–3251Google Scholar
  186. Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89Google Scholar
  187. Soetaert K, Herman PMJ (1995) Nitrogen dynamics in the Westerschelde estuary (S.W. Netherlands) estimated by means of the ecosystem model MOSES. Hydrobiologia 311:225–246Google Scholar
  188. Soetaert K, Middelburg JJ, Heip C (2006) Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnol Oceanogr 51:409–423Google Scholar
  189. Sommerfield CK, Wong KC (2011) Mechanisms of sediment flux and turbidity maintenance in the Delaware Estuary. J Geophys Res 116. doi:  10.1029/2010JC006462
  190. Spiteri C, Van Cappellen P, Regnier P (2008) Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers. Geochim Cosmochim Acta 72:3431–3445Google Scholar
  191. Stommel H (1953) Computation of pollution in a vertically mixed estuary. Sewage Ind Wastes 25:1065–1071Google Scholar
  192. Struyf E, Van Damme S, Gribsholt B, Meire P (2005) Freshwater marshes as dissolved silica recyclers in an estuarine environment (Schelde estuary, Belgium). Hydrobiologia 540:69–77Google Scholar
  193. Tappin AD (2002) An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries: current estimates and uncertainties. Estuar Coast Shelf Sci 55:885–901Google Scholar
  194. Tappin AD, Harris JRW, Uncles RJ (2003) The fluxes and transformations of suspended particles, carbon and nitrogen in the Humber estuarine system (UK) from 1994 to 1996: results from an integrated observation and modelling study. Sci Total Environ 314–316:665–713Google Scholar
  195. Thieu V, Mayorga E, Billen G, Garnier J (2010) Sub-regional and downscaled-global scenarios of nutrient transfer in river basins: the seine-Scheldt-Somme case study. Special issue “Past and Future Trends in Nutrient Export from Global Watersheds and Impacts on Water Quality and Eutrophication”. Global Biogeochem Cycles 24:1–15Google Scholar
  196. Thieu V, Billen G, Garnier J, Benoît M (2011) Nitrogen cycling in a hypothetical scenario of generalized organic agriculture in the Seine, Somme and Scheldt watersheds. Reg Environ Change 11:359–370Google Scholar
  197. Thullner M, Regnier P, Van Cappellen P (2007) Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions. Geomicrobiol J 24. doi:  10.1080/01490450701459275
  198. Trimmer M, Nedwell DB, Sivyer DB, Malcom SJ (1998) Nitrogen fluxes through the lower estuary of the river Great Ouse, England: the role of the bottom sediments. Mar Ecol Prog Ser 163:109–124Google Scholar
  199. Uncles RJ, Jordan MB (1980) One-dimensional representation of residual currents in the Severn Estuary and associated observations. Estuar Coast Mar Sci 10:39–60Google Scholar
  200. Uncles RJ, Radford PJ (1980) Seasonal and spring-neap tidal dependence of axial dispersion coefficients in the Severn: a wide, vertically mixed estuary. J Fluid Mech 98:703–726Google Scholar
  201. Uncles RJ, Stephens JA (1999) Suspended sediment fluxes in the tidal Ouse, UK. J Hydrol Process 13:1167–1179Google Scholar
  202. van Beusekom JEE, de Jonge VN (1998) Retention of phosphorus and nitrogen in the Ems estuary. Estuaries 21:527–539Google Scholar
  203. Van Cappellen P, Wang Y (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Am J Sci 296:197–243Google Scholar
  204. van der Zee C, Roevros N, Chou L (2007) Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Mar Chem 106:76–91Google Scholar
  205. Vanderborght JP, Wollast R, Loijens M, Regnier P (2002) Application of a transport-reaction model to the estimation of biogas fluxes in the Scheldt estuary. Biogeochem 59:207–237Google Scholar
  206. Vanderborght JP, Folmer I, Aguilera DR, Uhrenholdt T, Regnier P (2007) Reactive-transport modelling of a river-estuarine-coastal zone system: application to the Scheldt estuary. Mar Chem 106:92–110Google Scholar
  207. Ver LMB, Mackenzie FT, Lerman A (1999) Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries. Chem Geol 159:283–304Google Scholar
  208. Volta C, Arndt S, Savenije HHG, Laruelle GG, Regnier P (2013) C-GEM (v 1.0): a new, cost-efficient biogeochemical model for estuaries and its application to a funnel-shaped system. Geosci Model Dev Discuss 6:5645–5709Google Scholar
  209. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382Google Scholar
  210. Webster IT, Smith SV, Parslow J (2000) Implications of spatial and temporal variation for biogeochemical budgets of estuaries. J Phys Oceanogr 12:112–115Google Scholar
  211. Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359Google Scholar
  212. Wild-Allen K, Skerratt J, Rizwi F, Parslow J (2009) Derwent estuary biogeochemical model: Technical report. CSIRO Mar Atmos ResGoogle Scholar
  213. Wollast R (1983) Interaction in estuaries and coastal waters. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. Wiley, SCOPE, pp 385–407Google Scholar
  214. Wollast R (1998) Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink KH, Robinson AR (eds) The major biogeochemical cycles and their interactions. Wiley-Interscience, New YorkGoogle Scholar
  215. Wollast R, Peters JJ (1978) Biogeochemical properties of an estuarine system: the river Scheldt. Biogeochemistry of estuarine sediments: In: Proceedings of a UNESCO/SCOR workshop held in Melreux, Begium (1976)Google Scholar
  216. Wulff F, Stigebrandt A, Rahm L (1990) Nutrient dynamics of the Baltic Sea. Ambio 19:126–133Google Scholar
  217. Wulff F, Eyre BD, Johnstone R (2011) Nitrogen versus phosphorus limitation in a subtropical coastal embayment (Moreton Bay; Australia): implications for management. Ecol Model 222:120–130Google Scholar
  218. Yeats PA (1993) Input of metals to the North Atlantic from two large Canadian estuaries. Mar Chem 43:201–209Google Scholar
  219. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, AmsterdamGoogle Scholar
  220. Zhai W, Dai M, Cai W, Wang Y, Wang Z (2005) High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Mar Chem 93:21–32Google Scholar
  221. Zhang H, Li S (2010) Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer. J Mar Syst 79:65–88Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pierre Regnier
    • 1
    Email author
  • Sandra Arndt
    • 2
  • Nicolas Goossens
    • 1
  • Chiara Volta
    • 1
  • Goulven G. Laruelle
    • 1
  • Ronny Lauerwald
    • 1
    • 3
  • Jens Hartmann
    • 4
  1. 1.Department of Earth and Environmental SciencesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.BRIDGE, School of Geographical SciencesUniversity of BristolBristolUK
  3. 3.CNRS, FR636Institut Pierre-Simon LaplaceGuyancourt CedexFrance
  4. 4.Institute for Biogeochemistry and Marine Chemistry, KlimaCampusUniversität HamburgHamburgGermany

Personalised recommendations