Aquatic Geochemistry

, Volume 19, Issue 5–6, pp 353–369 | Cite as

Clues from Current High CO2 Environments on the Effects of Ocean Acidification on CaCO3 Preservation

  • Andreas J. AnderssonEmail author
  • Nicholas R. Bates
  • Marlene A. Jeffries
  • Kyra Freeman
  • Charles Davidson
  • Shaun Stringer
  • Evan Betzler
  • Fred T. Mackenzie
Original Paper


Acidification of surface seawater owing to anthropogenic activities has raised serious concerns on its consequences for marine calcifying organisms and ecosystems. To acquire knowledge concerning the future consequences of ocean acidification (OA), researchers have relied on incubation experiments with organisms exposed to future seawater conditions, numerical models, evidence from the geological record, and recently, observations from aquatic environments exposed to naturally high CO2 and low pH, e.g., owing to volcanic CO2 vents, upwelling, and groundwater input. In the present study, we briefly evaluate the distribution of dissolved CO2–carbonic acid parameters at (1) two locations in the Pacific and the Atlantic Ocean as a function of depth, (2) a mangrove environment in Bermuda, (3) a seasonally stratified body of water in a semi-enclosed sound in Bermuda, and (4) in temporarily isolated tide pools in Southern California. We demonstrate that current in situ conditions of seawater pCO2, pH, and CaCO3 saturation state (Ω) in these environments are similar or even exceed the anticipated changes to these parameters in the open ocean over the next century as a result of OA. The observed differences between the Pacific and Atlantic Oceans with respect to seawater CO2–carbonic acid chemistry, preservation of CaCO3 minerals, and the occurrence and distribution of deep-sea marine calcifiers, support the hypothesized negative effects of OA on the production and preservation of CaCO3 in surface seawater. Clues provided from shallow near-shore environments in Bermuda and Southern California support these predictions, but also highlight that many marine calcifiers already experience relatively high seawater pCO2 and low pH conditions.


Ocean acidification CO2 CaCO3 Aragonite Mg–calcite Tide pool Near-shore 



FTM gratefully acknowledges partial support of this research from a grant from the FNRS of the Belgium-French community and the National Science Foundation (Grants ATM 04-39051, EAR 02-23509, and OCE 07-49401). AJA and NRB are grateful for support from NOAA (Grant NA10AR4310094).


  1. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348CrossRefGoogle Scholar
  2. Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31(6):513–516CrossRefGoogle Scholar
  3. Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305(9):875–918CrossRefGoogle Scholar
  4. Andersson A, Bates N, Mackenzie F (2007) Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole, Bermuda. Aquat Geochem 13(3):237–264. doi: 10.1007/s10498-007-9018-8 CrossRefGoogle Scholar
  5. Andersson AJ, Kuffner IB, Mackenzie FT, Tan A, Jokiel PL, Rodgers KS (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823Google Scholar
  6. Andersson AJ, Mackenzie FT, Gattuso J-P (2011) Effects of ocean acidification on benthic processes, organisms, and ecosystems. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 122–153Google Scholar
  7. Archer D, Kheshgi H, Maier-Reimer E (1998) Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Glob Biogeochem Cycles 12(2):259–276. doi: 10.1029/98gb00744 CrossRefGoogle Scholar
  8. Bacastow R, Keeling CK (1973) Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from A. D. 1700 to 2070 as deduced from a geochemical model. Brookhaven Symp Biol 30:86–135Google Scholar
  9. Bates NR (2007) Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J Geophys Res(C9):C09013. doi: 10.1029/2006jc003759
  10. Bates NR, Michaels AF, Knap AH (1996) Alkalinity changes in the Sargasso Sea: geochemical evidence of calcification? Mar Chem 51(4):347–358. doi: 10.1016/0304-4203(95)00068-2 CrossRefGoogle Scholar
  11. Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ (2012) Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9(7):2509–2522. doi: 10.5194/bg-9-2509-2012 CrossRefGoogle Scholar
  12. Bayer FM, Macintyre IG (2001) The mineral composition of the axis and holdfast of some gorgonacean octocorals (Coelenterata: Anthozoa), with special reference to the family Gorgoniidae. Proc Biol Soc Wash 114:309–345Google Scholar
  13. Berger WH, Adelseck CG Jr, Mayer LA (1976) Distribution of carbonate in surface sediments of the Pacific Ocean. J Geophys Res 81:2617–2627CrossRefGoogle Scholar
  14. Berner RA, Berner EK, Keir RS (1976) Aragonite dissolution on the Bermuda pedestal: its depth and geochemical significance. Earth Planet Sci Lett 30:169–178CrossRefGoogle Scholar
  15. Biscaye PE, Kolla V, Turekian KK (1976) Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. J Geophys Res 81:2595–2603CrossRefGoogle Scholar
  16. Broecker WS, Peng TH (1982) Tracers in the sea. Eldigio Press, PalisadesGoogle Scholar
  17. Broecker WS, Li YH, Peng TH (1971) Carbon dioxide- man’s unseen artifact. In: Hood DH (ed) Impingement of man on the oceans. Wiley, New York, pp 287–324Google Scholar
  18. Cairns SD, Macintyre IG (1992) Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios 7:96–107CrossRefGoogle Scholar
  19. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425(6956):365CrossRefGoogle Scholar
  20. Chave KE (1962) Factors influencing the mineralogy of carbonate sediments. Limnol Oceanogr 7:218–223CrossRefGoogle Scholar
  21. Crook ED, Cohen AD, Rebolledo-Vieyra M, Hernandez L, Paytan A (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci. doi: 10.1073/pnas.1301589110 Google Scholar
  22. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part I 34(10):1733–1743. doi: 10.1016/0198-0149(87)90021-5 CrossRefGoogle Scholar
  23. Dickson AG, Sabine C, Christian JR (2007) Guide to best practises for ocean CO2 measurements. PICES Special Publication, vol 3. North Pacific Marine Science Organization, Sidney, British ColumbiaGoogle Scholar
  24. Drupp P, De Carlo EH, Mackenzie FT, Bienfang P, Sabine CL (2011) Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquat Geochem 17:473–498CrossRefGoogle Scholar
  25. Drupp P, De Carlo EH, Mackenzie FT, Sabine CL, Feely A, Shamberger K (2013) Comparison of CO2 dynamics and air-sea gas exchange in differing tropical reef environments. Aquat Geochem (in press)Google Scholar
  26. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1(3):165–169CrossRefGoogle Scholar
  27. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366CrossRefGoogle Scholar
  28. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320(5882):1490–1492CrossRefGoogle Scholar
  29. Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water coral reefs. Paper presented at the UNEP-WCMC, CambridgeGoogle Scholar
  30. Friedrich J, Dinkel C, Friedl G, Pimenov N, Wijsman J, Gomoiu MT, Cociasu A, Popa L, Wehrli B (2002) Benthic nutrient cycling and diagenetic pathways in the north-western Black Sea. Estuar Coast Shelf Sci 54(3):369–383. doi: 10.1006/ecss.2000.0653 CrossRefGoogle Scholar
  31. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39(1):160–183. doi: 10.1007/s00338-003-0331-4 Google Scholar
  32. Guinotte J, Buddemeier R, Kleypas J (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22(4):551–558. doi: 10.1007/s00338-003-0331-4 CrossRefGoogle Scholar
  33. Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4(3):141–146. doi:10.1890/1540-9295(2006)004[0141:WHCISC]2.0.CO;2Google Scholar
  34. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200):96–99CrossRefGoogle Scholar
  35. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6 (12):e28983. doi: 10.1371/journal.pone.0028983
  36. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The geological record of ocean acidification. Science 335(6072):1058–1063CrossRefGoogle Scholar
  37. IPCC (2001) Climate change 2001: the scientific basis, Contribution of working group I to the third assessment report of the inter-governmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  38. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120CrossRefGoogle Scholar
  39. Kleypas J, Feely RA, Fabry VJ, Langdon C, Sabine C, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005. St. Petersburg, FLGoogle Scholar
  40. Kuffner IB, Andersson AJ, Jokiel P, Rodgers KS, Mackenzie FT (2008) Decreases in recruitment of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117CrossRefGoogle Scholar
  41. Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4(3):225–233CrossRefGoogle Scholar
  42. Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. Environmental Sciences Division publication number 4735, Feb 1998Google Scholar
  43. Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci 105:10450–10455CrossRefGoogle Scholar
  44. Marubini F, Ferrier-Pages C, Cuif J-P (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc R Soc London Ser B 270(1511):179–184CrossRefGoogle Scholar
  45. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6):897–907CrossRefGoogle Scholar
  46. Montenegro A, Brovkin V, Eby M, Archer D, Weaver AJ (2007) Long term fate of anthropogenic carbon. Geophys Res Lett 34(19):L19707. doi: 10.1029/2007gl030905 CrossRefGoogle Scholar
  47. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates (trans: Mackenzie FT). Developments in sedimentology 048. Elsevier, New YorkGoogle Scholar
  48. Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg–calcites. Geochim Cosmochim Acta 70(23):5814–5830. doi: 10.1016/j.gca.2006.08.017 CrossRefGoogle Scholar
  49. Murray J, Renard AF (1891) Deep sea deposits, report of the scientific results of HMS Challenger, pp 1873–1876Google Scholar
  50. Neumann AC (1965) Processes of recent carbonate sedimentation in Harrington Sound, Bermuda. Bull Mar Sci 15(4):987–1035Google Scholar
  51. Orr J (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 41–66Google Scholar
  52. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686CrossRefGoogle Scholar
  53. Park G-H, Lee K, Tishchenko P, Min D-H, Warner MJ, Talley LD, Kang D-J, Kim K-R (2006) Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry. Glob Biogeochem Cycles 20 (4):GB4013. doi: 10.1029/2005gb002676
  54. Riebesell U, Tortell PD (2011) Effects of ocean acidification on pelagic organisms and ecosystems. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 99–121Google Scholar
  55. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification in marine plankton in response to increased atmospheric CO2. Nature 407:634–637Google Scholar
  56. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312(5773):543–547CrossRefGoogle Scholar
  57. Schmalz RF, Chave KE (1963) Calcium carbonate: factors affecting saturation in ocean waters off Bermuda. Science 139(3560):1206–1207. doi: 10.1126/science.139.3560.1206 CrossRefGoogle Scholar
  58. Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36(5):L05606. doi: 10.1029/2008gl036282 CrossRefGoogle Scholar
  59. Walter LM, Morse JW (1985) The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim Cosmochim Acta 49:1503–1513Google Scholar
  60. Zablocki J, Andersson A, Bates N (2011) Diel aquatic CO2 system dynamics of a Bermudian mangrove environment. Aquat Geochem 17(6):841–859. doi: 10.1007/s10498-011-9142-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andreas J. Andersson
    • 1
    Email author
  • Nicholas R. Bates
    • 2
  • Marlene A. Jeffries
    • 2
  • Kyra Freeman
    • 1
  • Charles Davidson
    • 1
  • Shaun Stringer
    • 1
  • Evan Betzler
    • 1
  • Fred T. Mackenzie
    • 3
  1. 1.Scripps Institution of OceanographyUniversity of CaliforniaLa JollaUSA
  2. 2.Bermuda Institute of Ocean SciencesSt. George’sBermuda
  3. 3.Department of OceanographyUniversity of HawaiiHonoluluUSA

Personalised recommendations