Advertisement

Aquatic Geochemistry

, Volume 19, Issue 5–6, pp 501–516 | Cite as

Silica Mass-Balance and Retention in the Riverine and Estuarine Scheldt Tidal System (Belgium/The Netherlands)

  • Vincent CarbonnelEmail author
  • Jean-Pierre Vanderborght
  • Lei ChouEmail author
Original Paper

Abstract

An annual budget for dissolved silica (DSi) and biogenic silica (BSi) was constructed for the Scheldt estuary and for the entire riverine and estuarine Scheldt tidal system (Belgium/The Netherlands) using previously published silica concentrations and fluxes for the period 2003–2005. The annual estuarine DSi mass-balance was established, based on seasonal fluxes estimated using measured DSi concentrations and (fully transient) model simulations of conservative transport. The annual BSi mass-balance was deduced from measured BSi contents in the suspended particulate matter and annual mud fluxes taken from the literature. The Scheldt estuary acted as a net sink not only for the BSi carried by the tidal river as well as that produced by diatoms in the estuary, but also for large amounts of BSi imported from the coastal zone. This results in the retention of dissolved and biogenic silica higher than that of DSi alone, which is in contrast with the classical consideration that rivers act as a source of BSi for the coastal zone. DSi and silica (DSi + BSi) retentions amounted to, respectively, 28 and 64 % in the estuary, and 33 and 66 % in the entire tidal system. This study highlights thus the predominant role of the estuary in the entire Scheldt tidal system when dealing with silica dynamics, as well as the importance of including BSi when investigating estuarine silica retention.

Keywords

Dissolved silica Biogenic silica Silica budget Silica mass-balance Silica retention Scheldt estuary 

Abbreviations

BSi

(Particulate amorphous) biogenic silica

DSi

Dissolved silica (silicic acid)

SPM

Suspended particulate matter

Notes

Acknowledgments

We are grateful to Marie Lionard, Pierre Regnier, Damien Cardinal and Koenraad Muylaert for their comments on previous versions of the manuscript. This study was financed in the framework of the SISCO project by the Belgian Federal Science Policy Office (BELSPO) under contract number EV/11/17A. Additional fundings were provided by the Belgian French Community (convention number FRFC 2.4579.04) and by the TIMOTHY project financed by BELSPO (Interuniversity Attraction Pole, IAP 6/13). This is also a contribution to the FP7 GEOCARBON project (Contract No. 283080) funded by the European Union. Finally, we would like to dedicate this work to Fred Mackenzie who conducted the pioneering work on the weathering and diagenesis of silicate minerals.

References

  1. Admiraal W, Breugem P, Jacobs DMLHA, van Steveninck EDR (1990) Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower river Rhine during diatom blooms. Biogeochemistry 9:175–185CrossRefGoogle Scholar
  2. Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61(3):677–682CrossRefGoogle Scholar
  3. Anderson GF (1986) Silica, diatoms and a freshwater productivity maximum in Atlantic coastal plain estuaries, Chesapeake Bay. Estuar Coast Shelf Sci 22:183–197CrossRefGoogle Scholar
  4. Arndt S, Regnier P (2007) A model for the benthic-pelagic coupling of silica in estuarine ecosystems: sensitivity analysis and system scale simulation. Biogeosciences 4:331–352CrossRefGoogle Scholar
  5. Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C (2011) Nutrient dynamics and phytoplankton development along an estuary-coastal zone continuum: a model study. J Mar Syst 84:49–66CrossRefGoogle Scholar
  6. Baeyens W, Van Eck B, Lambert C, Wollast R, Goeyens L (1998) General description of the Scheldt estuary. Hydrobiologia 366:1–14CrossRefGoogle Scholar
  7. Beucher C, Tréguer P, Corvaisier R, Hapette AM, Elskens M (2004) Production and dissolution of biosilica, and changing microphytoplankton dominance in the Bay of Brest (France). Mar Ecol Prog Ser 267:57–69CrossRefGoogle Scholar
  8. Billen G, Lancelot C, Meybeck M (1991) N, P, and Si retention along the aquatic continuum from land to ocean. In: Mantoura RFC, Martin J-M, Wollast R (eds) Ocean margin processes in global change, Dahlem workshop report. Wiley, London, pp 19–44Google Scholar
  9. Boschker HTS, Kromkamp JC, Middelburg JJ (2005) Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr 50(1):70–80CrossRefGoogle Scholar
  10. Brochard CJE, Koeman RPT, de Keijzer-de Haan AL, Verweij GL, Fockens K, Esselink P (2005) Biomonitoring van fytoplankton in de Nederlandse zoute wateren 2004, kite-diagrammen. Koeman en bijkerk bv, ecologisch onderzoek en advies, Haren, The Netherlands (in Dutch)Google Scholar
  11. Canfield DE, Kristensen E, Thamdrup B (2005) The silicon cycle. In: Canfield DE, Kristensen E, Thamdrup B (eds) Aquatic geomicrobiology: advances in marine biology, vol 48. Academic Press, London, pp 441–463CrossRefGoogle Scholar
  12. Carbonnel V (2009) Silica dynamics and retention in the Scheldt tidal river and estuary (Belgium/The Netherlands). Ph.D. thesis. Université Libre de Bruxelles, Belgium (http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-06132009-201603/) (in English, summary in French)
  13. Carbonnel V, Lionard M, Muylaert K, Chou L (2009) Dynamics of dissolved and biogenic silica in the freshwater reaches of a macrotidal estuary (The Scheldt, Belgium). Biogeochemistry 96(1–3):49–72CrossRefGoogle Scholar
  14. Carbonnel V, Vanderborght JP, Lionard M, Chou L (2013) Diatoms, silicic acid and biogenic silica dynamics along the salinity gradient of the Scheldt estuary (Belgium/The Netherlands). Biogeochemistry 113:657–682CrossRefGoogle Scholar
  15. Chen MS, Wartel S, Van Eck B, Van Maldegem D (2005) Suspended matter in the Scheldt estuary. Hydrobiologia 540(1–3):79–104CrossRefGoogle Scholar
  16. Chou L, Wollast R (2006) Estuarine silicon dynamics. In: Ittekot V, Unger D, Humborg C, TacAn N (eds) The silicon cycle: human perturbations and impacts on aquatic systems. SCOPE 66. Island Press, Washington, pp 93–120Google Scholar
  17. Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42(4):774–777CrossRefGoogle Scholar
  18. Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Mar Ecol Prog Ser 101:179–192CrossRefGoogle Scholar
  19. D’Elia CF, Nelson DM, Boynton WR (1983) Chesapeake Bay nutrient and plankton dynamics: III. The annual cycle of dissolved silicon. Geochim Cosmochim Acta 47:1945–1955CrossRefGoogle Scholar
  20. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732CrossRefGoogle Scholar
  21. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731CrossRefGoogle Scholar
  22. Elliot M, McLusky DS (2002) The need for definitions in understanding estuaries. Estuar Coast Shelf Sci 55:815–827CrossRefGoogle Scholar
  23. Fettweis M, Sas M, Monbaliu J (1998) Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt estuary, Belgium. Estuar Coast Shelf Sci 47:21–36CrossRefGoogle Scholar
  24. Friedrichs CT (1995) Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels. J Coastal Res 11(4):1062–1074Google Scholar
  25. Gallinari M, Ragueneau O, Corrin L, DeMaster DJ, Treguer P (2002) The importance of water column processes on the dissolution properties of biogenic silica in deep-sea sediments I, Solubility. Geochimica et Cosmochimica Acta 66(15):2701–2717CrossRefGoogle Scholar
  26. Liu SM, Ye XW, Zhang J, Zhang GS, Wu Y (2008) The silicon balance in Jiaozhou Bay, North China. J Mar Syst 74:639–648CrossRefGoogle Scholar
  27. Mackenzie FT, Ristvet BL, Thorstenson DC, Lerman A, Leeper RH (1981) Reverse weathering and chemical mass balance in a coastal environment. In: Martin JM, Burton JD, Eisma D (eds) River inputs to ocean systems. UNEP and UNESCO, Switzerland, pp 152–187Google Scholar
  28. Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840CrossRefGoogle Scholar
  29. McLusky DS (1993) Marine and estuarine gradients: an overview. Neth J Aquat Ecol 27(2–4):489–493CrossRefGoogle Scholar
  30. Meire P, Ysebaert T, Van Damme S, Van den Bergh E, Maris T, Struyf E (2005) The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540(1–3):1–11CrossRefGoogle Scholar
  31. Muylaert K, Raine R (1999) Import, mortality and accumulation of coastal phytoplankton in a partially mixed estuary (Kinsale harbour, Ireland). Hydrobiologia 412:53–65CrossRefGoogle Scholar
  32. Muylaert K, Sabbe K (1999) Spring phytoplankton assemblages in and around the maximum turbidity zone of the estuaries of the Elbe (Germany), the Schelde (Belgium/The Netherlands) and the Gironde (France). J Mar Syst 22(2–3):133–149CrossRefGoogle Scholar
  33. Muylaert K, Sabbe K, Vyverman W (2000) Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde, Belgium). Estuar Coast Shelf Sci 50(5):673–687CrossRefGoogle Scholar
  34. Muylaert K, Gonzales R, Franck M, Lionard M, van der Zee C, Cattrijsse A, Sabbe K, Chou L, Vyverman W (2006) Spatial variation in phytoplankton dynamics in the Belgian coastal zone of the North Sea studied by microscopy, HPLC-CHEMTAX and underway fluorescence recordings. J Sea Res 55:253–265CrossRefGoogle Scholar
  35. Muylaert K, Sabbe K, Vyverman W (2009) Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuar Coast Shelf Sci 82:335–340CrossRefGoogle Scholar
  36. Nedwell DB, Trimmer M (1996) Nitrogen fluxes through the upper estuary of the Great Ouse, England: the role of the bottom sediments. Mar Ecol Prog Ser 142:273–286CrossRefGoogle Scholar
  37. Pastuszak M, Conley DJ, Humborg C, Witek Z, Sitek S (2008) Silicon dynamics in the Oder estuary, Baltic Sea. J Mar Syst 73:250–262CrossRefGoogle Scholar
  38. Ragueneau O, Tréguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, Francois R, Heinze C, Maier-Reimer E, Martin-Jézéquel V, Nelson DM, Quéguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob Planet Change 26(4):317–365CrossRefGoogle Scholar
  39. Ragueneau O, Chauvaud L, Moriceau B, Leynaert A, Thouzeau G, Donval A, Le Loc’h F, Jean F (2005) Biodeposition by an invasive suspension feeder impacts the biogeochemical cycle of Si in a coastal ecosystem (Bay of Brest, France). Biogeochemistry 75:19–41CrossRefGoogle Scholar
  40. Ragueneau O, Conley DJ, Leynaert A, Ni Longphuirt S, Slomp CP (2006) Role of diatoms in silicon cycling and coastal marine food webs. In: Ittekot V, Unger D, Humborg C, TacAn N (eds) The silicon cycle: human perturbations and impacts on aquatic systems. SCOPE 66. Island Press, Washington, pp 163–195Google Scholar
  41. Rendell AR, Horrobin TM, Jickells TD, Edmunds HM, Brown J, Malcom SJ (1997) Nutrient cycling in the Great Ouse estuary and its impact on nutrient fluxes to The Wash, England. Estuar Coast Shelf Sci 45(5):653–668CrossRefGoogle Scholar
  42. Rijstenbil JW, Bakker C, Jackson RH, Merks AGA, de Visscher PRM (1993) Spatial and temporal variation in community composition and photosynthetic characteristics of phytoplankton in the upper Westerschelde estuary (Belgium, SW Netherlands). Hydrobiologia 269(270):263–273CrossRefGoogle Scholar
  43. Roubeix V (2007) Transformations biogéochimiques et transfert du silicium dans la zone de transition fleuve-mer : le rôle des diatomées planctoniques. Ph. D. thesis. Université Libre de Bruxelles, Belgium (in French and English)Google Scholar
  44. Roubeix V, Becquevort S, Lancelot C (2008) Influence of bacteria and salinity on diatom biogenic silica dissolution in estuarine systems. Biogeochemistry 88(1):47–62CrossRefGoogle Scholar
  45. Rousseau V, Leynaert A, Daoud N, Lancelot C (2002) Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern North Sea). Mar Ecol Prog Ser 236:61–73CrossRefGoogle Scholar
  46. Sabater S (2009) Diatoms. In: Likens GE (ed) Encyclopedia of Inland waters, vol 1. Elsevier, Oxford, pp 149–156CrossRefGoogle Scholar
  47. Soetaert K, Herman PMJ (1995) Estimating estuarine residence times in the Westerschelde (The Netherlands) using a box model with fixed dispersion coefficients. Hydrobiologia 311:215–224CrossRefGoogle Scholar
  48. Soetaert K, Herman PMJ, Kromkamp JC (1994) Living in the twilight: estimating net phytoplankton growth in the Westerschelde estuary (The Netherlands) by means of an ecosystem model (MOSES). J Plankton Res 16:1277–1301CrossRefGoogle Scholar
  49. Soetaert K, Middelburg JJ, Heip C, Meire P, Van Damme S, Maris T (2006) Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnol Oceanogr 51(1, part 2):409–423CrossRefGoogle Scholar
  50. Tréguer PJ, De La Rocha CL (2013) The World ocean silica cycle. Ann Rev Marine Sci 5:477–501CrossRefGoogle Scholar
  51. Tréguer P, Pondaven P (2000) Silica control of carbon dioxide. Nature 406:358–359CrossRefGoogle Scholar
  52. Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379CrossRefGoogle Scholar
  53. Triplett LD, Engstrom DR, Conley DJ, Schellhaass SM (2008) Silica fluxes and trapping in two contrasting natural impoundments of the upper Mississippi River. Biogeochemistry 87:217–230CrossRefGoogle Scholar
  54. Uncles RJ, Stephens JA, Smith RE (2002) The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time. Cont Shelf Res 22(11–13):1835–1856CrossRefGoogle Scholar
  55. Van Damme S, Struyf E, Maris T, Ysebaert T, Dehairs F, Tackx M, Heip C, Meire P (2005) Spatial and temporal patterns of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and The Netherlands): results of an integrated monitoring approach. Hydrobiologia 540(1–3):29–45CrossRefGoogle Scholar
  56. Van der Zee C, Roevros N, Chou L (2007) Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Mar Chem 106(1–2):76–91Google Scholar
  57. Van Maldegem DC, Mulder HPJ, Langerak A (1993) A cohesive sediment balance for the Scheldt Estuary. Neth J Aquat Ecol 27(2–4):247–256CrossRefGoogle Scholar
  58. Vereeke SJP (1994) Geactualiseerde slibbalans Schelde-estuarium (2e concept). Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat, Directie Zeeland, Middelburg, The Netherlands (in Dutch)Google Scholar
  59. Verlaan PAJ, Donze M, Kuik P (1998) Marine vs fluvial suspended matter in the Scheldt estuary. Estuar Coast Shelf Sci 46:873–883CrossRefGoogle Scholar
  60. Wartel S, Chen M, van Eck GTM, Van Maldegem D (2007) Influence of harbour construction on mud accumulation in the Scheldt estuary. Aquat Ecosyst Health Manag 10(1):107–115CrossRefGoogle Scholar
  61. Wollast R (1974) The silica problem. In: Goldberg ED (ed) The sea, vol 5. Wiley, New York, pp 359–392Google Scholar
  62. Yamada SS, D’Elia CF (1984) Silicic acid regeneration from estuarine sediment cores. Mar Ecol Prog Ser 18:113–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Service de Biogéochimie et Modélisation du Système Terre—Océanographie Chimique et Géochimie des Eaux, Département des Sciences de la Terre et de l’Environnement, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Geography DepartmentPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations