Aquatic Geochemistry

, Volume 18, Issue 6, pp 543–564 | Cite as

Benthic Phosphorus Dynamics in the Gulf of Finland, Baltic Sea

  • Lena Viktorsson
  • Elin Almroth-Rosell
  • Anders Tengberg
  • Roman Vankevich
  • Ivan Neelov
  • Alexey Isaev
  • Victor Kravtsov
  • Per O. J. Hall
Original Paper


Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load). The yearly integrated benthic SRP flux was found to be almost 10 times larger than the external (river and land sources) phosphorus load. The average SRP flux was 1.25 ± 0.56 mmol m−2 d−1 on anoxic bottoms, and −0.01 ± 0.08 mmol m−2 d−1 on oxic bottoms. The bottom water oxygen conditions determined whether the SRP flux was in a high or low regime, and degradation of organic matter (as estimated from benthic DIC fluxes) correlated positively with SRP fluxes on anoxic bottoms. From this correlation, we estimated a potential increase in phosphorus flux of 0.69 ± 0.26 mmol m−2 d−1 from presently oxic bottoms, if they would turn anoxic. An almost full annual data set of in situ bottom water oxygen measurements showed high variability of oxygen concentration. Because of this, an estimate of the time which the sediments were exposed to oxygenated overlying bottom water was computed using a coupled thermohydrodynamic ocean–sea and ecosystem model. Total phosphorus burial rates were calculated from vertical profiles of total phosphorus in sediment and sediment accumulation rates. Recycling and burial efficiencies for phosphorus of 97 and 3%, respectively, were estimated for anoxic accumulation bottoms from a benthic mass balance, which was based on the measured effluxes and burial rates.


Sediment Fluxes Burial Oxic-anoxic Gulf of Finland Baltic Sea 



We thank the Finnish Environment Institute (SYKE), and especially Paula Väänänen, for deploying and recovering the long-term moorings, and Henrik Andersson for assistance during expeditions. Constructive criticism from two anonymous reviewers improved the manuscript. This study was financially supported by the EU through the INTAS program and HYPOX project, as well as by the Swedish Research Councils FORMAS and VR. The senior authors of this paper have sincerely enjoyed and benefited from the years of scientific collaboration with Bjorn Sundby. Those years were special. This paper is dedicated to him.


  1. Almroth E, Tengberg A, Andersson JH, Pakhomova S, Hall POJ (2009) Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea. Cont Shelf Res 29(5–6):807–818. doi: 10.1016/j.csr.2008.12.011 CrossRefGoogle Scholar
  2. Anderson LG, Hall POJ, Iverfeldt A, Vanderloeff MMR, Sundby B, Westerlund SFG (1986) Benthic respiration measured by total carbonate production. Limnol Oceanogr 31(2):319–329CrossRefGoogle Scholar
  3. Andersson JH, Tengberg A, Stahl H, Middelburg JJ, Soetaert K, Hall POJ (2011) Respiration of organic carbon in sediments of Gulf of FinlandGoogle Scholar
  4. Balzer W, Grasshoff K, Dieckmann P, Haardt H, Petersohn U (1983) Redox-turnover at the sediment water interface studied in a large bell jar system. Oceanol Acta 6(4):337–344Google Scholar
  5. Blomqvist S, Gunnars A, Elmgren R (2004) Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnol Oceanogr 49(6):2236–2241CrossRefGoogle Scholar
  6. Brunnegard J, Tengberg A, Almroth E, Nielsen L-P, Roos P, Eriksson S, Kravtsov V, Pankratova N, Hall POJ (2011) Nitrogen transformations and fluxes in sediments of the Gulf of Finland, Baltic SeaGoogle Scholar
  7. Carman R, Cederwall H (2001) Sediments and macrofauna in the Baltic Sea—characteristics, nutrient contents and distribution. In: Wulff FV, Rahm LA, Larsson P (eds) A system analysis of the Baltic Sea, vol 148. Ecological studies. Springer, Berlin, pp 289–327Google Scholar
  8. Conley DJ, Stockenberg A, Carman R, Johnstone RW, Rahm L, Wulff F (1997) Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 45(5):591–598CrossRefGoogle Scholar
  9. Conley DJ, Humborg C, Rahm L, Savchuk OP, Wulff F (2002) Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol 36(24):5315–5320. doi: 10.1021/Es025763w CrossRefGoogle Scholar
  10. Davelaar D (1993) Ecological significance of bacterial polyphosphate metabolism in sediments. Hydrobiologia 253(1–3):179–192CrossRefGoogle Scholar
  11. Eilola K, Meier HEM, Almroth E (2009) On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; A model study. J Marine Syst 75(1–2):163–184. doi: 10.1016/j.jmarsys.2008.08.009 CrossRefGoogle Scholar
  12. Finni T, Kononen K, Olsonen R, Wallstrom K (2001) The history of cyanobacterial blooms in the Baltic Sea. Ambio 30(4–5):172–178Google Scholar
  13. Gachter R, Meyer JS (1993) The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253(1–3):103–121CrossRefGoogle Scholar
  14. Gunnars A, Blomqvist S (1997) Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions—an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37(3):203–226CrossRefGoogle Scholar
  15. Gustafsson BG, Stigebrandt A (2007) Dynamics of nutrients and oxygen/hydrogen sulfide in the Baltic Sea deep water. J Geophys Res-Biogeo 112 (G2). doi: 10.1029/2006jg000304
  16. Hall POJ, Anderson LG, Vanderloeff MMR, Sundby B, Westerlund SFG (1989) Oxygen-uptake kinetics in the benthic boundary-layer. Limnol Oceanogr 34(4):734–746 Google Scholar
  17. Hall POJ, Hulth S, Hulthe G, Landen A, Tengberg A (1996) Benthic nutrient fluxes on a basin-wide scale in the Skagerrak (north-eastern North Sea). J Sea Res 35(1–3):123–137CrossRefGoogle Scholar
  18. Hille S, Nausch G, Leipe T (2005) Sedimentary deposition and reflux of phosphorus (P) in the Eastern Gotland Basin and their coupling with P concentrations in the water column. Oceanologia 47:663–679Google Scholar
  19. Holm LG (1978) Phosphorus exchange through the sediment-water interface. Mechanism studies of dynamic processes in the Baltic Sea. University of Stockholm, StockholmGoogle Scholar
  20. Ingall E, Jahnke R (1994) Evidence for enhanced phosphorus regeneration from marine-sediments overlain by oxygen depleted waters. Geochim Cosmochim Acta 58(11):2571–2575CrossRefGoogle Scholar
  21. Ingall E, Jahnke R (1997) Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar Geol 139(1–4):219–229CrossRefGoogle Scholar
  22. Ingall ED, Bustin RM, Van Cappellen P (1993) Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim Cosmochim Acta 57(2):303–316CrossRefGoogle Scholar
  23. Jeffery P (1973) Chemical methods of rock analysis. Mir, MoscowGoogle Scholar
  24. Jensen HS, Mortensen PB, Andersen FO, Rasmussen E, Jensen A (1995) Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol Oceanogr 40(5):908–917CrossRefGoogle Scholar
  25. Jilbert T, Slomp CP, Gustafsson B, Boer W (2011) Beyond the Fe_P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles. Biogeosciences 8(6):1699–1720. doi: 10.5194/bg-8-1699-2011 CrossRefGoogle Scholar
  26. Jonsson P, Carman R, Wulff F (1990) Laminated sediments in the Baltic: a tool for evaluating nutrient mass balances. Ambio 19(3):152–158Google Scholar
  27. Kiirikki M, Lehtoranta J, Inkala A, Pitkanen H, Hietanen S, Hall POJ, Tengberg A, Koponen J, Sarkkula J (2006) A simple sediment process description suitable for 3D-ecosystem modelling—development and testing in the Gulf of Finland. J Marine Syst 61(1–2):55–66. doi: 10.1016/j.jmarsys.2006.02.008 CrossRefGoogle Scholar
  28. Kullenberg G, Jacobsen TS (1981) The Baltic Sea: an outline of its physical oceanography. Mar Pollut Bull 12(6):183–186CrossRefGoogle Scholar
  29. Larsson U, Hajdu S, Walve J, Elmgren R (2001) Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen. Limnol Oceanogr 46(4):811–820CrossRefGoogle Scholar
  30. Lehtoranta J (1998) Net sedimentation and sediment-water nutrient fluxes in the eastern Gulf of Finland (Baltic Sea). Vie Et Milieu-Life Environ 48(4):341–352Google Scholar
  31. Lehtoranta J (2003) Dynamics of sediment phosphorus in the brackish Gulf of Finland. University of Helsinki, HelsinkiGoogle Scholar
  32. Lehtoranta J, Heiskanen AS (2003) Dissolved iron: phosphate ratio as an indicator of phosphate release to oxic water of the inner and outer coastal Baltic Sea. Hydrobiologia 492(1–3):69–84CrossRefGoogle Scholar
  33. Lehtoranta J, Pitkanen H (2003) Binding of phosphate in sediment accumulation areas of the eastern Gulf of Finland, Baltic Sea. Hydrobiologia 492(1–3):55–67CrossRefGoogle Scholar
  34. Lehtoranta J, Ekholm P, Pitkanen H (2009) Coastal eutrophication thresholds: a matter of sediment microbial processes. Ambio 38(6):303–308CrossRefGoogle Scholar
  35. Lukkari K, Leivuori M, Kotilainen A (2009a) The chemical character and behaviour of phosphorus in poorly oxygenated sediments from open sea to organic-rich inner bay in the Baltic Sea. Biogeochemistry 96(1–3):25–48. doi: 10.1007/s10533-009-9343-7 CrossRefGoogle Scholar
  36. Lukkari K, Leivuori M, Vallius H, Kotilainen A (2009b) The chemical character and burial of phosphorus in shallow coastal sediments in the northeastern Baltic Sea. Biogeochemistry 94(2):141–162. doi: 10.1007/s10533-009-9315-y CrossRefGoogle Scholar
  37. Mattila J, Kankaanpaa H, Ilus E (2006) Estimation of recent sediment accumualtion rates in the Baltic Sea using artificial radionuclides 137Cs and 239, 240Pu as time markers. Boreal Environ Res 11:95–107Google Scholar
  38. Mort HP, Slomp CP, Gustafsson BG, Andersen TJ (2010) Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions. Geochim Cosmochim Acta 74(4):1350–1362. doi: 10.1016/j.gca.2009.11.016 CrossRefGoogle Scholar
  39. Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes: III and IV. J Ecol 30:147–201CrossRefGoogle Scholar
  40. Myrberg K, Ryabchenko V, Isaev A, Vankevich R, Andrejev O, Bendtsen J, Erichsen A, Funkquist L, Inkala A, Neelov I, Rasmus K, Medina MR, Raudsepp U, Passenko J, Soderkvist J, Sokolov A, Kuosa H, Anderson TR, Lehmann A, Skogen MD (2010) Validation of three-dimensional hydrodynamic models of the Gulf of Finland. Boreal Environ Res 15(5):453–479Google Scholar
  41. Neelov IA, Eremina TR, Isaev AV, Vladimir A, Ryabchenko Savchuk OP, Vankevich RE (2003) A simulation of the Gulf of Finland ecosystem with 3-D model. Proc Estonian Acad Sci Biol Ecol 52:346–359Google Scholar
  42. Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 107(2):563–576. doi: 10.1021/Cr0503613 CrossRefGoogle Scholar
  43. Perttila M, Niemisto L, Makela K (1995) Distribution, development and total amounts of nutrients in the Gulf-of-Finland. Estuar Coast Shelf Sci 41(3):345–360CrossRefGoogle Scholar
  44. Pitkanen H, Tallberg P (2007) Searching efficient protection strategies for the eutrophied Gulf of Finland: the integrated use of experimental and modelling tools (SEGUE). vol Final report. Finnish Environment Institute (SYKE), HelsinkiGoogle Scholar
  45. Pitkanen H, Lehtoranta J, Raike A (2001) Internal nutrient fluxes counteract decreases in external load: The case of the estuarial eastern Gulf of Finland, Baltic Sea. Ambio 30(4–5):195–201Google Scholar
  46. Pitkanen H, Lehtoranta J, Peltonen H, Laine A, Kotta J, Kotta I, Moskalenko MökinenA, Kangas P, Perttilä M, Kiirikki M (2003) Benthic release of phosphorus and its relation to environmental conditions in the estuarial Gulf of Finland, Baltic Sea, in the early 2000s. Proc Estonianl Acad Sci Biol Ecol 52(3):173–192Google Scholar
  47. Savchuk OP, Wulff FV (2001) A model of the biogeochemical cycles of nitrogen and phosphorus in the Baltic. In: Wulff FV, Rahm LA, Larsson P (eds) A systems analysis of the Baltic Sea, vol 148. Ecological studies, vol 148. Springer, Berlin, pp 373–416Google Scholar
  48. Skoog A, Hall POJ, Hulth S, Paxeus N, vanderLoeff MR, Westerlund S (1996) Early diagenetic production and sediment-water exchange of fluorescent dissolved organic matter in the coastal environment. Geochim Cosmochim Acta 60(19):3619–3629CrossRefGoogle Scholar
  49. Stahl H, Tengberg A, Brunnegard J, Bjornbom E, Forbes TL, Josefson AB, Kaberi HG, Hassellov IMK, Olsgard F, Roos P, Hall POJ (2004) Factors influencing organic carbon recycling and burial in Skagerrak sediments. J Mar Res 62(6):867–907CrossRefGoogle Scholar
  50. Stigebrandt A (2001) Physical oceanography of the Baltic Sea. In: Wulff FV, Rahm LA, Larsson P (eds) A systems analysis of the Baltic Sea, vol 148. Ecological studies, vol 148. Springer, Berlin, pp 19–74Google Scholar
  51. Sundby B, Anderson LG, Hall POJ, Iverfeldt A, Vanderloeff MMR, Westerlund SFG (1986) The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim Cosmochim Acta 50(6):1281–1288CrossRefGoogle Scholar
  52. Tengberg A, De Bovee F, Hall P, Berelson W, Chadwick D, Ciceri G, Crassous P, Devol A, Emerson S, Gage J, Glud R, Graziottini F, Gundersen J, Hammond D, Helder W, Hinga K, Holby O, Jahnke R, Khripounoff A, Lieberman S, Nuppenau V, Pfannkuche O, Reimers C, Rowe G, Sahami A, Sayles F, Schurter M, Smallman D, Wehrli B, De Wilde P (1995) Benthic chamber and profiling landers in oceanography—a review of design, technical solutions and functioning. Prog Oceanogr 35(3):253–294CrossRefGoogle Scholar
  53. Tengberg A, Hovdenes J, Andersson JH, Brocandel O, Diaz R, Hebert D, Arnerich T, Huber C, Körtzinger A, Khripounoff A, Rey F, Rönning C, Sommer S, Stangelmayer A (2006) Evaluation of a life time based optode to measure oxygen in aquatic systems. Limnol Oceanogr Methods 4:7–17CrossRefGoogle Scholar
  54. Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkanen H, Savchuk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff F (2007) Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36(2–3):186–194CrossRefGoogle Scholar
  55. Van Cappellen P, Ingall ED (1994) Benthic phosphorus regeneration, net primary production, and ocean anoxia—a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9(5):677–692CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lena Viktorsson
    • 1
  • Elin Almroth-Rosell
    • 2
  • Anders Tengberg
    • 2
  • Roman Vankevich
    • 3
  • Ivan Neelov
    • 4
  • Alexey Isaev
    • 4
  • Victor Kravtsov
    • 5
  • Per O. J. Hall
    • 2
  1. 1.Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  2. 2.Department of Chemistry, Marine ChemistryUniversity of GothenburgGothenburgSweden
  3. 3.SPb Scientific Research Center for Environmental SafetySaint-PetersburgRussia
  4. 4.Russian State Hydrometeorological UniversitySaint-PetersburgRussia
  5. 5.Atlantic Branch of P.P Shirshov Institute of OceanologyRussian Academy of Science (ABIORAS)KaliningradRussia

Personalised recommendations