Aquatic Geochemistry

, Volume 18, Issue 2, pp 77–94 | Cite as

Impact of a Fluorine-Rich Granite Intrusion on Levels and Distribution of Fluoride in a Small Boreal Catchment

  • T. Berger
  • P. Peltola
  • H. Drake
  • M. Åström
Original Paper


This paper explores the influence of a fluorine-rich granite on fluoride concentration in a small boreal catchment in northern Europe. The materials include stream water and shallow groundwater sampled in spatial and temporal dimensions, and analytical data on fluoride and a number of ancillary variables. Fluoride increased strongly towards the lower reaches of the catchment—at the stream outlet the concentrations were up to 4.2 mg L−1 and 1.6–4.7 times higher than upstream. Additionally, fluoride concentrations were particularly high in groundwater and small surface-water bodies (including quarries) above or in direct contact with the granite and showed a strong inverse correlation with water discharge in the stream. Taken together, these data and patterns pin-point the granite intrusion as the ultimate source, explaining the abundance and distribution of dissolved fluoride within the catchment. The granite most likely deliver fluoride to the stream by three mechanisms: (1) weathering of the fine fraction of glacial deposits, derived from the granite and associated fluorine-rich greisen alterations, (2) large relative input of baseflow, partially originating in the granite and greisen, into the lower reaches during low flow in particular, and (3) water-conducting fractures or fracture zones running through the fluorine-rich granite and greisen.


Fluoride Hydrogeochemistry Boreal environment Surface water Shallow groundwater Anorogenic granite 



Nova-FoU, based in the city of Oskarshamn, was kind and generous in providing us with opportunities to utilise existing data owned by the Swedish Nuclear Fuel and Waste Management Co.


  1. Åhäll K-I (2001) Åldersbestämning av svårdaterade bergarter i sydöstra Sverige. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-01-60, StockholmGoogle Scholar
  2. Alm E, Sundblad K (2002) Fluorite-calcite-galena-bearing fractures in the counties of Kalmar and Blekinge, Sweden. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-02-42, StockholmGoogle Scholar
  3. Alm E, Sundblad K, Huhma H (2005) Sm-Nd isotope determinations of low-temperature fluorite–calcite-galena mineralization in the margins of the Fennoscandian Shield. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-05-66, StockholmGoogle Scholar
  4. Appelo CAJ, Postma D (2007) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema, AmsterdamGoogle Scholar
  5. Bailey JC (1977) Fluorine in granitic rocks and melts—a review. Chem Geol 19(1):1–42CrossRefGoogle Scholar
  6. Brunt R, Vasak L, Griffioen J (2004) Fluoride in groundwater: probability of occurence of excessive concentration on global scale. International Groundwater Resources Assessment Centre (IGRAC). Report SP 2004–2, UtrechtGoogle Scholar
  7. Buffam I, Laudon H, Seibert J, Morth CM, Bishop K (2008) Spatial heterogeneity of the spring flood acid pulse in a boreal stream network. Sci Total Environ 407(1):708–722. doi: 10.1016/j.scitotenv.2008.10.006 CrossRefGoogle Scholar
  8. De Vos W, Tarvainen T, Salminen R, Reeder S, De Vivo B, Demetriades A, Pirc S, Batista MJ, Marsina K, O’Connor R-T, O’Connor PJ, Bidovec M, Lima A, Siewers U, Smith B, Taylor H, Shaw R, Salpeteur L, Gregorauskiene V, Halamic J, Slaninka I, Lax K, Gravesen P, Birke M, Breward N, Ander EL, Jordan G, Duris M, Klein P, Locutura J, Bel-lan A, Pasieczna A, Lis J, Mazreku A, Gilucis A, Heitzmann P, Klaver G, Petersell V (2006) Geochemical Atlas of Europe. Part 2—Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Geol Surv Finland. Accessed 22 May 2010
  9. Drake H (2012) Geochemistry of fracture-related greisen close to the Götemar granite, SE Sweden (in preparation)Google Scholar
  10. Drake H, Tullborg EL (2006) Oskarshamn site investigation. Fracture mineralogy of the Götemar granite. Results from drill cores KKR01, KKR02 and KKR03. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report P-06-04, StockholmGoogle Scholar
  11. Drake H, Tullborg EL (2009) Fracture mineralogy Laxemar, site-descriptive modelling, SDM-site Laxemar. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-08-99, StockholmGoogle Scholar
  12. Drake H, Tullborg EL, Annersten H (2008) Red-staining of the wall rock and its influence on the reducing capacity around water conducting fractures. Appl Geochem 23(7):1898–1920. doi: 10.1016/j.apgeochem.2008.02.017 CrossRefGoogle Scholar
  13. Drake H, Tullborg EL, Page L (2009) Distinguished multiple events of fracture mineralisation related to far-field orogenic effects in Paleoproterozoic crystalline rocks, Simpevarp area, SE Sweden. Lithos 110(1–4):37–49. doi: 10.1016/j.lithos.2008.12.003 CrossRefGoogle Scholar
  14. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking-water. World Health Organization (WHO)Google Scholar
  15. Harrison PTC (2005) Fluoride in water: a UK perspective. J Fluor Chem 126(11–12):1448–1456. doi: 10.1016/j.jfluchem.2005.09.009 CrossRefGoogle Scholar
  16. Jha SK, Nayak AK, Sharma YK, Mishra VK, Sharma DK (2008) Fluoride accumulation in soil and vegetation in the vicinity of brick fields. Bull Environ Contam Toxicol 80(4):369–373. doi: 10.1007/s00128-008-9391-z CrossRefGoogle Scholar
  17. Johansson T, Adestam L (2004) Drilling and sampling in soil. Installation of groundwater monitoring wells in the Laxemar area. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report P-04-317, StockholmGoogle Scholar
  18. Kim K, Jeong GY (2005) Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula. Chemosphere 58(10):1399–1408. doi: 10.1016/j.chemosphere.2004.10.002 CrossRefGoogle Scholar
  19. Kornfält K-A, Persson P-O, Wikman H (1997) Granitoids from the Äspö area, southeastern Sweden—geochemical and geochronological data. GFF 119(2):109–114CrossRefGoogle Scholar
  20. Kresten P, Chyssler J (1976) The Götemar Massif in south-eastern Sweden: a reconnaissance survey. Geologiska Föreningen i Stockholm Förhandlingar 98:155–161CrossRefGoogle Scholar
  21. Lahermo P, Backman B (2000) The occurrence and geochemistry of fluorides with special reference to natural waters in Finland. Report of investigation 149. Geol Surv FinlandGoogle Scholar
  22. Lindborg T (2005) Description of surface systems. Preliminary site description. Simpevarp sub area—version 1.2. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-05-01, StockholmGoogle Scholar
  23. Lindroos H (2004) The potential for ore, industrial minerals and commercial stones in the Simpevarp area. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-04-72, StockholmGoogle Scholar
  24. Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P (2009) Review of fluoride removal from drinking water. J Environ Manag 91(1):67–77. doi: 10.1016/j.jenvman.2009.08.015 CrossRefGoogle Scholar
  25. Naseem S, Rafique T, Bashir E, Bhanger MI, Laghari A, Usmani TH (2010) Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere 78(11):1313–1321. doi: 10.1016/j.chemosphere.2010.01.010 CrossRefGoogle Scholar
  26. Nilsson G (2004) Investigation of sediments, peat lands and wetlands. Stratigraphical and analytical data. Oskarshamn site investigation. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report P-04-273, StockholmGoogle Scholar
  27. Ozsvath DL (2006) Fluoride concentrations in a crystalline bedrock aquifer Marathon County, Wisconsin. Environ Geol 50(1):132–138. doi: 10.1007/s00254-006-0192-6 CrossRefGoogle Scholar
  28. Pillai KS, Stanley VA (2002) Implications of fluoride—an endless uncertainty. J Environ Biol 23(1):81–87Google Scholar
  29. Rango T, Bianchini G, Beccaluva L, Ayenew T, Colombani N (2009) Hydrogeochemical study in the Main Ethiopian Rift: new insights to the source and enrichment mechanism of fluoride. Environ Geol 58(1):109–118. doi: 10.1007/s00254-008-1498-3 CrossRefGoogle Scholar
  30. Reddy DV, Nagabhushanam P, Sukhija BS, Reddy AGS, Smedley PL (2010) Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India. Chem Geol 269(3–4):278–289. doi: 10.1016/j.chemgeo.2009.10.003 CrossRefGoogle Scholar
  31. Röshoff K, Cosgrove J (2002) Sedimentary dykes in the Oskarshamn-Västervik area—A study of the mechanism of formation. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-02-37, StockholmGoogle Scholar
  32. Rudmark L, Malmberg-Persson K, Mikko H (2005) Investigation of Quaternary deposits 2003–2004. Oskarshamn site investigation. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report P-05-49, StockholmGoogle Scholar
  33. Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, O’Connor R-T, Petersell V, Plant JA, Reeder S, Salpeteur L, Sanström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical atlas of Europe. Part 1—background information, methodology and maps. Geol Surv Finland. Accessed 22 May 2010
  34. Saxena VK, Ahmed S (2001) Dissolution of fluoride in groundwater: a water-rock interaction study. Environ Geol 40(9):1084–1087CrossRefGoogle Scholar
  35. Saxena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43(6):731–736. doi: 10.1007/s00254-002-0672-2 Google Scholar
  36. Sjögren J, Hillgren R, Wern L, Jones J, Engdahl A (2007) Hydrological, meteorological monitoring at Oskarshamn, July 2005 until December 2006. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-07-38, StockholmGoogle Scholar
  37. Sohlenius G, Hedenström A (2008) Description of regolith at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-08-05, StockholmGoogle Scholar
  38. Valenzuela-Vasquez L, Ramirez-Hernandez J, Reyes-Lopez J, Sol-Uribe A, Lazaro-Mancilla O (2006) The origin of fluoride in groundwater supply to Hermosillo City, Sonora, Mexico. Environ Geol 51(1):17–27. doi: 10.1007/s00254-006-0300-7 CrossRefGoogle Scholar
  39. Wahlgren C-H, Ahl M, Sandahl K-A, Berglund J, Petersson J, Ekström M, Persson P-O (2004) Oskarshamn site investigation. Bedrock mapping 2003—Simpevarp subarea. Outcrop data, fracture data, modal and geochemical classification of rock types, bedrock map, radiometric dating. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report P-04-102, StockholmGoogle Scholar
  40. Wahlgren C-H, Hermanson J, Forssberg O, Curtis P, Triumf C-A, Drake H, Tullborg EL (2006) Geological description of rock domains and deformation zones in the Simpevarp and Laxemar subareas. Preliminary site description Laxemar subarea—version 1.2. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-05-69, StockholmGoogle Scholar
  41. Wahlgren C-H, Curtis P, Hermanson J, Forssberg O, Öhman J, Drake H, Fox A, Triumf C-A, Mattsson H, Thunehed H (2008) Geology Laxemar. Site descriptive modelling, SDM-Site Laxemar. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-08-54, StockholmGoogle Scholar
  42. Werner K, Bosson E, Berglund S (2006) Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description Laxemar subarea—version 1.2. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-05-61, StockholmGoogle Scholar
  43. Werner K, Öhman J, Holgersson B, Rönnback K, Marelius F (2008) Metereological, hydrological and hydrogeological monitoring data and near-surface hydrogeological properties data from Laxemar-Simpevarp. Site descriptive modelling, SDM-Site Laxemar. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-08-73, StockholmGoogle Scholar
  44. WHO (2008) Guidelines for drinking-water quality. Third edition incorporating the first and second addenda, vol 1. World Health Organization, GenevaGoogle Scholar
  45. Zhu L, Zhang HH, Xia B, Xu DR (2007) Total fluoride in Guangdong soil profiles, China: spatial distribution and vertical variation. Environ Int 33(3):302–308. doi: 10.1016/j.envint.2006.10.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Natural SciencesLinnaeus UniversityKalmarSweden

Personalised recommendations