Advertisement

Aquatic Geochemistry

, Volume 18, Issue 6, pp 565–591 | Cite as

Manganese Sources and Sinks in the Arctic Ocean with Reference to Periodic Enrichments in Basin Sediments

  • Robie W. MacdonaldEmail author
  • Charles Gobeil
Original Paper

Abstract

Between 1990 and 2007, twenty-nine box cores were recovered within the Arctic Ocean spanning shelf, slope and basin locations, and analyzed for aluminum (Al), manganese (Mn), other inorganic components and organic carbon (COrg). Using these core data together with literature values, we have constructed budgets for Al and Mn in the Arctic Ocean. Most of the Al and Mn entering the Arctic comes from rivers or coastal erosion, and almost all of these two elements is trapped within the Arctic. Total Mn distributions in sediments reflect the recycling and loss of much of the Mn from shelf sediments with ultimate burial over the slopes and in basins. Mn enrichments observed as bands in long cores from the basins appear to co-occur with inter-glacial periods. Our Mn budget suggests that change in sea level associated with the accumulation and melting of glaciers is a likely cause for the banding. The Arctic Ocean, which presently contains as much as 50% shelf area, loses most of that when global sea level falls by ~120 m during glacial maxima. With lower sea level, Mn input from rivers and coastal erosion declines, and inputs become stored in permafrost on the sub-aerial shelves or at the shelf margin. Sea-level rise re-establishes coastal erosion and large riverine inputs at the margin and initiates the remobilization of Mn stored on shelves by turning on algal productivity, which provides the COrg required to reduce sedimentary Mn oxyhydroxides.

Keywords

Arctic Ocean Manganese Aluminum Budget Sediments 

Notes

Acknowledgments

Financial support over the period of core collection came from several sources including the Northern Oil and Gas Action Program (NOGAP) of Indian and Northern Affairs, with ship-time support from the Department of Fisheries and Oceans. We gratefully acknowledge the Canadian IPY Program and the Natural Sciences and Engineering Research Council of Canada for their support to collect cores widely in 2007–2008. We also thank L. Beaudin and S. Jobidon for support in the laboratory, D. Dubien for technical assistance at sea, L. Rancourt for research assistance and P. Kimber for producing the diagrams. We thank two anonymous reviewers who provided clear and very helpful comments on an earlier version of this paper.

References

  1. Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94(C10):14485–14498CrossRefGoogle Scholar
  2. Aller RC (1990) Bioturbation and manganese cycling in hemipelagic sediments. Philos Trans Royal Soc Lond A 331:51–86CrossRefGoogle Scholar
  3. Anderson LG, Dyrssen DW, Jones EP, Lowings MG (1983) Inputs and outputs of salt, fresh water, alkalinity and silica in the Arctic Ocean. Deep Sea Res 30(1):87–94CrossRefGoogle Scholar
  4. Belicka LL, Macdonald RW, Yunker MB, Harvey HR (2004) The role of depositional regime on carbon transport and preservation in Arctic Ocean sediments. Mar Chem 86:65–88CrossRefGoogle Scholar
  5. Belicka LL, Macdonald RW, Harvey HR (2009) Trace element and molecular markers of organic carbon dynamics along a shelf-basin continuum in sediments of the western Arctic Ocean. Mar Chem 115:72–85. doi: 10.1016/j.marchem.2009.06.007 CrossRefGoogle Scholar
  6. Broecker WS (1982) Ocean chemistry during glacial times. Geochim Cosmochim Acta 46:1689–1705CrossRefGoogle Scholar
  7. Bruland KW, Franks RP (1983) Mn, Ni, Cu, Zn and Cd in the western North Atlantic. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, pp 395–414Google Scholar
  8. Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35:249–284CrossRefGoogle Scholar
  9. Burdige DJ (2006) Geochemistry of marine sediments. Princeton University Press, Princeton NJGoogle Scholar
  10. Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113(1–2):67–88CrossRefGoogle Scholar
  11. Calvert SE, Pedersen TF, Karlin RE (2001) Geochemical and isotopic evidence for post-glacial palaeoceanographic changes in Saanich Inlet, British Columbia. Mar Geol 174(1–4):287–305CrossRefGoogle Scholar
  12. Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53:619–632CrossRefGoogle Scholar
  13. Canfield DE, Thamdrup B, Hansen JW (1993) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction and sulphate reduction. Geochim Cosmochim Acta 57:3867–3883CrossRefGoogle Scholar
  14. Christensen JH, Shimada K, Semiletov I, Wheeler PA (2008) Chlorophyll response to shelf-Break upwelling and winds in the Chukchi Sea, Alaska, in autumn. Open Oceanogr J 2:34–53CrossRefGoogle Scholar
  15. Clough LM, Renauld PE, Ambrose WG (2005) Impacts of water depth, sediment pigment concentration, and benthic macrofaunal biomass on sediment oxygen demand in the Western Arctic Ocean. Can J Fish Aquat Sci 62:1756–1765CrossRefGoogle Scholar
  16. Codispoti L, Lowman D (1973) A reactive silicate budget for the Arctic Ocean. Limnol Oceanogr 18:448–456CrossRefGoogle Scholar
  17. Cooper LW, Lalande C, Pirtle-Levy R, Larsen IL, Grebmeier JM (2009) Seasonal and decadal shifts in particulate organic matter processing and sedimentation in the Bering Strait Shelf region. Deep Sea Res II 56(17):1316–1325. doi: 10.1016/j.dsr2.2008.10.025 CrossRefGoogle Scholar
  18. Crusius J, Calvert S, Pedersen T, Sage D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet Sci Lett 145(1–4):65–78CrossRefGoogle Scholar
  19. Edmonds H, Michael P, Baker E, Connelly D, Snow J, Langmuir C, Dick H, Muehe R, German C, Graham D (2003) Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature 421(6920):252–256CrossRefGoogle Scholar
  20. Eicken H (2004) The role of Arctic sea ice in transporting and cycling terrestrial organic matter. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Heidelberg, pp 45–53Google Scholar
  21. Emerson S, Hedges J (2003) Sediment diagenesis and benthic flux. In: Holland HD, Turekian KK (eds) The oceans and marine geochemistry (ed. H. Elderfield), vol 6. Elsevier-Pergamon, Oxford, pp 293–320Google Scholar
  22. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342(7 December):637–642CrossRefGoogle Scholar
  23. Feely RA, Massoth GJ, Trefry JH, Baker ET, Paulson AJ, Lebon GT (1994) Composition and sedimentation of hydrothermal plume particles from north cleft segment, Juan-de-Fuca ridge. J Geophys Res Solid Earth 99(B3):4985–5006CrossRefGoogle Scholar
  24. Finney BP, Lyle MW (1988) Sedimentation at MANOP site H (Eastern Equatorial Pacific) over the past 400,000 years: climatically induced redox variations and their effects on transition metal cycling. Paleoceanography 3(2):169–189CrossRefGoogle Scholar
  25. François R, Bacon MP, Altabet MA, Labeyrie LD (1993) Glacial interglacial changes in sediment rain rate in the SW Indian sector of sub-Antarctic waters as recorded by Th-230, Pa-231, U and δ15N. Paleoceanography 8:611–629CrossRefGoogle Scholar
  26. Gobeil C, Macdonald RW, Sundby B (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim Cosmochim Acta 61:4647–4654CrossRefGoogle Scholar
  27. Gobeil C, Macdonald RW, Smith JN (1999) Mercury profiles in sediments of the Arctic Ocean basins. Environ Sci Technol 33:4194–4198CrossRefGoogle Scholar
  28. Gobeil C, Sundby B, Macdonald RW, Smith JN (2001) Recent change in organic carbon flux to Arctic Ocean deep basins: evidence from acid volatile sulfide, manganese and rhenium discord in sediments. Geophys Res Lett 28(9):1743–1746CrossRefGoogle Scholar
  29. Grantz A, Phillips RL, Jones GA (1999) Holocene pelagic and turbidite sedimentation rates in the Amerasia Basin, Arctic Ocean from radiocarbon age-depth profiles in cores. Geo Res Forum 5:209–222Google Scholar
  30. Guo L, Semiletov I, Gustafsson Ö, Ingri J, Andersson P, Dudarev O, White D (2004) Characterization of Siberian Arctic coastal sediments: implications for terrestrial organic carbon export. Global Biogeochem Cycles 18(1):GB1036 1031-1010CrossRefGoogle Scholar
  31. Hahm D, Postlethwaite CF, Tamaki K, Kim KR (2004) Mechanisms controlling the distribution of helium and neon in the Arctic seas: the case of the Knipovich Ridge. Earth Planet Sci Lett 229(1–2):125–139. doi: 10.1016/j.epsl.2004.10.028 CrossRefGoogle Scholar
  32. Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663CrossRefGoogle Scholar
  33. Hill PR (1996) Late Quaternary sequence stratigraphy of the Mackenzie Delta. Can J Earth Sci 33:1064–1074CrossRefGoogle Scholar
  34. Hölemann JA, Schirmacher M, Prange A (2005) Seasonal variability of trace metals in the Lena River and the southeastern Laptev Sea: impact of the spring freshet. Global Planet Change 48:112–125CrossRefGoogle Scholar
  35. Honjo S, Krishfield RA, Eglinton TI, Manganini SJ, Kemp JN, Doherty K, Hwang J, McKee TK, Takizawa T (2010) Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise. Prog Oceanogr 85:137–170. doi: 10.1016/j.pocean.2010.02.009 CrossRefGoogle Scholar
  36. Hydes DJ (1980) Reduction of matrix effects with a soluble organic acid in the carbon furnace atomic absorption spectrometric determination of cobalt, copper, and manganese in seawater. Anal Chem 52:959–963CrossRefGoogle Scholar
  37. Jakobsson M (2002) Hypsometry and volume of the Arctic Ocean and its constituent seas. Geochem Geophys Geosyst 3(5):1028CrossRefGoogle Scholar
  38. Jakobsson M, Løvlie R, Al-Hanbali H, Arnold E, Backman J, Mörth M (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleisocene chronology. Geology 28(1):23–26CrossRefGoogle Scholar
  39. Jakobsson N, McNab R, Mayer L, Anderson R, Edwards M, Hatsky J, Schenke HW, Johnson P (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys Res Lett 35:L07602. doi: 10.1029/2008GL033520 CrossRefGoogle Scholar
  40. Johnson KS, Coale KH, Berelson WM, Gordon RM (1996) On the formation of the manganese maximum in the oxygen minimum. Geochim Cosmochim Acta 60(8):1291–1299CrossRefGoogle Scholar
  41. Kostka JE, Thamdrup B, Glud RN, Canfield DEMEPS (1999) Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180:7–21CrossRefGoogle Scholar
  42. Lepore K, Moran SB, Smith JN (2008) 210Pb as a tracer of shelf–basin transport and sediment focusing in the Chukchi Sea. Deep Sea Res II 56(17):1305–1315. doi: 10.1016/j.dsr2.2008.10.021 CrossRefGoogle Scholar
  43. Lewis EL, Jones EP, Lemke P, Prowse TD, Wadhams P (eds) (2000) The freshwater budget of the Arctic Ocean, vol environmental security, vol 70. NATO Science Series. Kluwer, LondonGoogle Scholar
  44. Li Y-H, Bischoff J, Mathieu G (1969) The migration of manganese in the Arctic basin sediment. Earth Planet Sci Lett 7:265–270CrossRefGoogle Scholar
  45. Li Y-F, Macdonald RW, Ma JM, Hung H, Venkatesh S (2004) Historical a-HCH budget in the Arctic Ocean: the Arctic mass balance box model (AMBBM). Sci Tot Env 324(1–3):115–139Google Scholar
  46. Lisitzin AP (1995) The marginal filter of the ocean. Oceanology 34(5):671–682Google Scholar
  47. Löwemark L, Jakobsson M, Mörth M, Backman J (2008) Arctic Ocean manganese contents and sediment colour cycles. Polar Res 27:105–113. doi: 10.1111/j.1751-8369.2008.00055.x CrossRefGoogle Scholar
  48. Luther GW, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochim Cosmochim Acta 61(19):4043–4052CrossRefGoogle Scholar
  49. Lyons TW, Severmann S (2006) A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim Cosmochim Acta 70:5698–5722CrossRefGoogle Scholar
  50. Macdonald RW, Carmack EC, Wallace DWR (1993) Tritium and radiocarbon dating of Canada Basin deep waters. Science 259:103–104CrossRefGoogle Scholar
  51. Macdonald RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DJ, Semkin RG, Strachan WMJ, Li YF, Wania F, Alaee M, Alexeeva LB, Backus SM, Bailey R, Bewers JM, Gobeil C, Halsall CJ, Harner T, Hoff JT, Jantunen LMM, Lockhart WL, Mackay D, Muir DCG, Pudykiewicz J, Reimer KJ, Smith JN, Stern GA, Schroeder WH, Wagemann R, Yunker MB (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources occurrence and pathways. Sci Total Environ 254:93–234CrossRefGoogle Scholar
  52. Macdonald RW, Anderson LG, Christensen JP, Miller LA, Semiletov IP, Stein R (2010) The Arctic Ocean: budgets and fluxes. In: Liu KK, Atkinson L, Quinones R, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins: a global synthesis, vol the IGBP series. Springer, Berlin, pp 290–303Google Scholar
  53. Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7:173–206CrossRefGoogle Scholar
  54. Measures CI (1999) The role of entrained sediments in sea ice in the distribution of aluminium and iron in the surface waters of the Arctic Ocean. Mar Chem 68:59–70CrossRefGoogle Scholar
  55. Measures CI, Edmond JM (1992) The distribution of aluminium in the Greenland Sea and its relationship to ventilation processes. J Geophys Res 97(C11):17787–17800CrossRefGoogle Scholar
  56. Measures CI, Landing WM, Brown MT, Buck CS (2008) High-resolution Al and Fe data from the Atlantic Ocean CLIVAR-CO2 repeat hydrography A16N transect: extensive linkages between atmospheric dust and upper ocean geochemistry. Global Biogeochem Cycles 22:GB1005. doi: 10.1029/2007GB003042 CrossRefGoogle Scholar
  57. Morford JL, Emerson S (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta 63(11/12):1735–1750CrossRefGoogle Scholar
  58. Murray J, Irvine R (1894) On the manganese oxides and manganese nodules in marine deposits. Trans Roy Soc Edin 37:721–742Google Scholar
  59. Nameroff TJ, Balistrieri LS, Murray JW (2002) Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochim Cosmochim Acta 66(7):1139–1158CrossRefGoogle Scholar
  60. Nauret F, Moreira M, Snow JE (2010) Rare gases in lavas from the ultraslow spreading Lena Trough, Arctic Ocean. Geochem Geophys Geosyst 11:12. doi: 10.1029/2010gc003027 CrossRefGoogle Scholar
  61. Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration—environmental significance, physiology, and regulation. Annu Rev Microbio 48:311–343CrossRefGoogle Scholar
  62. Nickel M, Vandieken V, Brüchert V, Jorgensen BB (2008) Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition. Deep Sea Res II 55:2390–2398CrossRefGoogle Scholar
  63. Nolting RF, van Dalen M, Helder W (1996) Distribution of trace and major elements in sediment and pore waters of the Lena Delta and Laptev Sea. Mar Chem 53:285–299CrossRefGoogle Scholar
  64. O’Brien MC, Macdonald RW, Melling H, Iseki K (2006) Geochemistry and physical forcing of sediment transport and deposition in the Canadian Beaufort Sea. Cont Shelf Res 26:41–81CrossRefGoogle Scholar
  65. Outridge PM, Macdonald RW, Wang F, Stern GA, Dastoor AP (2008) A mass balance inventory of mercury in the Arctic Ocean. Environ Chem 5:89–111. doi: 10.1071/EN08002 CrossRefGoogle Scholar
  66. Phillips RL, Grantz A, Mullen MW, White JM (1991) Preliminary lithostratigraphy of piston cores from the Beaufort Sea continental slope off northeastern Alaska. Open-file report 91–34 (2 sheets) edn. Department of the Interior, US Geological Survey, USGoogle Scholar
  67. Pohl C, Croot PL, Hennings U, Daberkow T, Budeus G, von der Loeff MR (2011) Synoptic transects on the distribution of trace elements (Hg, Pb, Cd, Cu, Ni, Zn, Co, Mn, Fe, and Al) in surface waters of the Northern- and Southern East Atlantic. J Mar Syst 84(1–2):28–41. doi: 10.1016/j.jmarsys.2010.08.003 CrossRefGoogle Scholar
  68. Poulton SW, Raiswell R (2000) Solid phase associations, oceanic fluxes and the anthropogenic perturbation of transition metals in world river particulates. Mar Chem 72:17–31CrossRefGoogle Scholar
  69. Raiswell R, Canfield DE, Berner RA (1994) A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chem Geol 111:101–110CrossRefGoogle Scholar
  70. Ridgway IM, Price NB (1987) Geochemical associations and post-depositional mobility of heavy metals in coastal sediments: Loch Etive, Scotland. Mar Chem 21:229–248CrossRefGoogle Scholar
  71. Roach AT, Aagaard K, Pease CH, Salo SA, Weingartner T, Pavlov V, Kulakov M (1995) Direct measurements of transport and water properties through the Bering Strait. J Geophys Res 100(C9):18443–18457CrossRefGoogle Scholar
  72. Rohling EJ (2010) Continuous 520,000-year sea-level record in 250-year timesteps, on an independent radiometrically calibrated chronology. Geochim Cosmochim Acta 74(12):A878–A878Google Scholar
  73. Rohling EJ, Fenton M, Jorissen FJ, Bertrand P, Ganssen G, Caulet JP (1998) Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394:162–165CrossRefGoogle Scholar
  74. Rozanov AG, Volkov II (2009) Bottom sediments of Kandalaksha Bay in the White Sea: the phenomenon of Mn. Geochem Intern 47:1004–1020CrossRefGoogle Scholar
  75. Rudels B, Friedrich HJ (2000) The transformations of Atlantic water in the Arctic Ocean and their significance for the freshwater budget. In: Lewis EL, Jones EP, Lemke P, Prowse TD, Wadhams P (eds) The freshwater budget of the Arctic Ocean. Kluwer, Boston, pp 503–532CrossRefGoogle Scholar
  76. Schlosser P, Kromer B, Östlund G, Ekwurzel B, Bönisch G, Loosli HH, Furtschert R (1994) On the 14C and 39Ar distribution in the central Arctic Ocean: implications for deep water formation. Radiocarbon 36(3):327–345Google Scholar
  77. Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW, Chu X, Anbar AD (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 457(27 March):457–460. doi: 10.1038/nature06811 Google Scholar
  78. Semiletov I, Dudarev O, Luchin V, Charkin A, Shin K-H, Tanaka N (2005) The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys Res Lett 32:L10614. doi: 10.1029/2005GL022490 CrossRefGoogle Scholar
  79. Serreze MC, Barrett AP, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res 111(11):C11010. doi: 10.1029/2005JC003424 CrossRefGoogle Scholar
  80. Severmann S, McManus J, Berelson WM, Hammond DE (2010) The continental shelf benthic iron flux and its isotope composition. Geochim Cosmochim Acta 74:3984–4004. doi: 10.1016/j.gca.2010.04.022 CrossRefGoogle Scholar
  81. Spokes L, Jickells T, Jarvis K (2001) Atmospheric inputs of trace metals to the northeast Atlantic Ocean: the importance of southeasterly flow. Mar Chem 76(4):219–230CrossRefGoogle Scholar
  82. Stein R, Macdonald RW (2004a) Chapter 8. Organic carbon budget: Arctic Ocean versus global ocean. In: Stein R, Macdonald RW (eds) The Arctic Ocean organic carbon cycle: present and past. Springer, Berlin, pp 315–322CrossRefGoogle Scholar
  83. Stein R, Macdonald RW (eds) (2004b) The organic carbon cycle in the Arctic Ocean. Springer, BerlinGoogle Scholar
  84. Suess E (1980) Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288:260–263CrossRefGoogle Scholar
  85. Sundby B (2006) Transient state diagenesis in continental margin muds. Mar Chem 102(1–2):2–12. doi: 10.1016/j.marchem.2005.09.016 CrossRefGoogle Scholar
  86. Swift JH, Jones EP, Aagaard K, Carmack EC, Hingston M, Macdonald RW, McLaughlin FA, Perkin RG (1997) Waters of the Makarov and Canada basins. Deep Sea Res II 44(8):1503–1529CrossRefGoogle Scholar
  87. Tsandev I, Slomp CP, Van Cappellen P (2008) Glacial-interglacial variations in marine phosphorus cycling: implications for ocean productivity. Global Biogeochem Cycles 22:GB4004. doi: 10.1029/2007GB003054 CrossRefGoogle Scholar
  88. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Bull Geol Soc Amer 72:175–192CrossRefGoogle Scholar
  89. Vandieken V, Nickel M, Jorgensen BB (2006) Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways. Mar Ecol Prog Ser 322:15–27CrossRefGoogle Scholar
  90. Wagemann R, Brunskill GJ, Graham BW (1977) Composition and reactivity of some river sediments from Mackenzie-valley, NWT, Canada. Environ Geol 1(6):349–365CrossRefGoogle Scholar
  91. Wangersky PJ (1962) Sedimentation in three carbonates cores. J Geol 70:364–375CrossRefGoogle Scholar
  92. Willey JD, Inscore MT, Keiber RJ, Skrabal SA (2009) Manganese in coastal rainwater: speciation, photochemistry and deposition to seawater. J Atmos Chem 62:31–43. doi: 10.1007/s10874-009-9140-7 CrossRefGoogle Scholar
  93. Woodgate RA, Aagaard K (2005) Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys Res Lett 32(2):L02602. doi: 10.1029/2004GL021747 CrossRefGoogle Scholar
  94. Woodgate RA, Fahrbach E, Rohardt G (1999) Structure and transports of the East Greenland Current at 75°N from moored current meters. J Geophys Res 104(C8):18059–18072CrossRefGoogle Scholar
  95. Yunker MB, Belicka LL, Harvey HR, Macdonald RW (2005) Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: a multivariate analysis of lipid biomarkers. Deep Sea Res II 52(24–26):3478–3508CrossRefGoogle Scholar
  96. Yunker MB, Macdonald RW, Snowdon LR (2009) Glacial to post-glacial transformation of organic input pathways in Arctic Ocean basins. Global Biogeochem Cycles 23:GB4016. doi: 10.1029/2009GB003503 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Fisheries and OceansInstitute of Ocean SciencesSidneyCanada
  2. 2.INRS-ETEUniversité du QuébecQuebecCanada

Personalised recommendations