Advertisement

Aquatic Geochemistry

, 17:749 | Cite as

Coastal Ocean Last Glacial Maximum to 2100 CO2-Carbonic Acid-Carbonate System: A Modeling Approach

  • Abraham Lerman
  • Michael GuidryEmail author
  • Andreas J. Andersson
  • Fred T. Mackenzie
Original Paper

Abstract

Using coupled terrestrial and coastal zone models, we investigated the impacts of deglaciation and anthropogenic inputs on the CO2–H2O–CaCO3 system in global coastal ocean waters from the Last Glacial Maximum (LGM: 18,000 year BP) to the year 2100. With rising sea level and atmospheric CO2, the carbonate system of coastal ocean water changed significantly. We find that 6 × 1012 metric tons of carbon were emitted from the coastal ocean, growing due to the sea level rise, from the LGM to late preindustrial time (1700 AD) because of net heterotrophy and calcification processes. This carbon came to reside in the atmosphere and in the growing vegetation on land and in uptake of atmospheric CO2 through the weathering of rocks on land. It appears that carbonate accumulation, mainly, but not exclusively, in coral reefs from the LGM to late preindustrial time could account for about 24 ppmv of the 100 ppmv rise in atmospheric CO2, lending some support to the “coral reef hypothesis”. In addition, the global coastal ocean is now, or soon will be, a sink of atmospheric CO2. The temperature rise of 4–5°C since the LGM led to increased weathering rates of inorganic and organic materials on land and enhanced riverine fluxes of total C, N, and P to the coastal ocean of 68%, 108%, and 97%, respectively, from the LGM to late preindustrial time. During the Anthropocene, these trends have been exacerbated owing to rising atmospheric CO2, due to fossil fuel combustion and land-use practices, other human activities, and rising global temperatures. River fluxes of total reactive C, N, and P are projected to increase from late preindustrial time to the year 2100 by 150%, 380%, and 257%, respectively, modifying significantly the behavior of these element cycles in the coastal ocean, particularly in proximal environments. Despite the fact that the global shoal water carbonate mass has grown extensively since the LGM, the pHT (pH values on the total proton scale) of global coastal waters has decreased from ~8.35 to ~8.18 and the carbonate ion concentration declined by ~19% from the LGM to late preindustrial time. The latter represents a rate of decline of about 0.028 μmol CO3 2− per decade. In comparison, the decrease in coastal water pHT from the year 1900 to 2000 was about 8.18–8.08 and is projected to decrease further from about 8.08 to 7.85 between 2000 and 2100, according to the IS92a business-as-usual scenario of CO2 emissions. Over these 200 years, the carbonate ion concentration will fall by ~120 μmol kg−1 or 6 μmol kg−1 per decade. This decadal rate of decline of the carbonate ion concentration in the Anthropocene is 214 times the average rate of decline for the entire Holocene. Hence, when viewed against the millennial to several millennial timescale of geologic change in the coastal ocean marine carbon system, one can easily appreciate why ocean acidification is the “other CO2 problem”.

Keywords

Glacial Interglacial Last Glacial Maximum Carbon dioxide Coastal ocean acidification Coral reef hypothesis 

Notes

Acknowledgments

This research was supported by NSF grants OCE-0749401 and OCE-0749404, and Arthur L. Howland of the Department of Earth and Planetary Sciences, Northwestern University. We are grateful to Alfonso Mucci, Guy Munhoven, and two anonymous reviewers for their insightful and helpful comments and bibliographic references. Any errors or omissions are ours.

References

  1. Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or sink of atmospheric CO2? Front Ecol Environ 2(7):348–353CrossRefGoogle Scholar
  2. Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31(6):513–516CrossRefGoogle Scholar
  3. Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. Am J Sci 305:875–918CrossRefGoogle Scholar
  4. Andersson AJ, Mackenzie FT, Lerman A (2006) Coastal ocean CO2-carbonic acid-carbonate sediment systems of the anthropocene. Global Biogeochem Cycles 20 (1):GB1S92. doi: 10.1029/2005GB002506
  5. Andersson AJ, Bates NR, Mackenzie FT (2007) Dissolution of carbonate sediments under rising CO2 and ocean acidification: observations from Devil’s Hole, Bermuda. Aquat Geochem 13(3):237–264CrossRefGoogle Scholar
  6. Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from coral reef communities due to human induced seawater acidification. Biogeosci Discuss 6:1–20CrossRefGoogle Scholar
  7. Bard E, Hamelin B, Fairbanks RG, Zindler A, Mathieu G, Arnold M (1990a) U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 years BP. Nucl Instrum Methods B52:461–468Google Scholar
  8. Bard E, Hamelin B, Fairbanks RG, Zindler A (1990b) Calibration of the 14C timescale over the past 30, 000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–410CrossRefGoogle Scholar
  9. Baumgartner A, Reichel E (1975) The World water balance. Elsevier, New YorkGoogle Scholar
  10. Berger WH (1982) Deglacial CO2 buildup: constraints on the coral-reef model. Paleogeogr Palaeoclimatol Palaeoecol 40:235–253CrossRefGoogle Scholar
  11. Berner RA (1994) GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 294:56–91CrossRefGoogle Scholar
  12. Berner EK, Berner RA (1996) Global water cycle: geochemistry and environment. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  13. Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geo-chemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683CrossRefGoogle Scholar
  14. Borges A (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27CrossRefGoogle Scholar
  15. Brady PV (1991) The effect of silicate weathering on global temperature and atmospheric CO2. J Geophys Res 96:18101–18106CrossRefGoogle Scholar
  16. Brink KH, Robinson AR (eds) (1998) The global coastal ocean: processes and methods. The sea, vol. 10. Wiley, New York, NYGoogle Scholar
  17. Broecker WS, Henderson GM (1998) The sequence of events surrounding Termination II and their implication for the cause of glacial-interglacial CO2 changes. Paleoceanography 13:352–364CrossRefGoogle Scholar
  18. Chavez FP, Toggweiler JR (1995) Physical estimates of global new production: the upwelling contribution. In: Summerhayes CP, Emeis K-C, Angel MV, Smith RL, Zeitschel B (eds) Upwelling in the ocean: modern processes and ancient records. Wiley, New York, pp 313–320Google Scholar
  19. Crowley TJ (1995) Ice age terrestrial carbon changes revisited. Global Biogeochem Cycles 9(3):377–389CrossRefGoogle Scholar
  20. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743CrossRefGoogle Scholar
  21. Drake CL, Burk CA (1974) Geological significance of continental margins. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 3–10Google Scholar
  22. Durack PJ, Wijffels SE (2010) Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J Climate 23:4342–4362CrossRefGoogle Scholar
  23. Emiliani C (1992) Planet earth. Cambridge University Press, New YorkGoogle Scholar
  24. Fairbanks RG (1989) A 17, 000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342:637–642CrossRefGoogle Scholar
  25. Fekete BM, Vörösmarty CJ (2007) The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements. Predictions in ungauged basins: PUB Kick-off. In: Proceedings of the PUB Kick-off meeting held in Brasilia, 20–22 November 2002. IAHS Publ. vol 309, pp 129–136Google Scholar
  26. Fekete BM, Vörösmarty CJ, Grabs W (2002) High resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem Cycles 16:1042–1052CrossRefGoogle Scholar
  27. François LM, Delire C, Warnant P, Munhoven G (1998) Modelling the glacial-interglacial changes in the continental biosphere. Global Planet Change 16–17(1–4):37–52. doi: 10.1016/S0921-8181(98)00005-8 CrossRefGoogle Scholar
  28. Frankignoulle M, Canon C, Gattuso JP (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39:458–462CrossRefGoogle Scholar
  29. Guidry MW, Mackenzie FT (2003) Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochimica Cosmochimica Acta 67:2949–2963CrossRefGoogle Scholar
  30. Gutjahr A, Dabringhaus H, Lacmann R (1996) Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite II. The influence of divalent cation additives on the growth and dissolution rates. J Crystal Growth 158:310–315CrossRefGoogle Scholar
  31. Intergovernmental Panel on Climate Change (IPCC) (2001) Climate Change 2001: the scientific basis. In: Houghton JT et al (eds) Contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change. 881 pp, Cambridge University Press, New YorkGoogle Scholar
  32. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: the scientific basis. In: Solomon S et al. (eds) Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  33. Joos F, Gerber S, Prentice IC, Otto-Bliesner BL, Valdes PJ (2004) Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles 18(2):GB2002. doi: 10.1029/2003GB002156
  34. Kaplan JO, Prentice IC, Knorr W, Valdes PJ (2002) Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophys Res Lett 29(22):2074. doi: 10.1029/2002GL015230 CrossRefGoogle Scholar
  35. Köhler P, Fischer H, Munhoven G, Zeebe RE (2005) Quantitative interpretation of atmospheric carbon records over the last glacial termination. Global Biogeochem Cycles 19:GB4020. doi: 10.1029/2004GB002345
  36. Labat D, Goddéris Y, Probst J-L, Gyot J-L (2004) Evidence for global runoff increase related to climate warming. Adv Water Resour 27(6):631–642CrossRefGoogle Scholar
  37. Leggett J, Pepper WJ, Swart RJ (1992) Emissions scenarios for the IPCC: an update. In Climate Change 1992: the supplementary report to the IPCC Scientific Assessment, chapter A3. Cambridge University Press, Cambridge, pp 69–95Google Scholar
  38. Lerman A, Mackenzie FT (2005) CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle. Aquat Geochem 11:345–390CrossRefGoogle Scholar
  39. Lerman A, Mackenzie FT, Ver LM (2004) Coupling of the perturbed C-N-P cycles in industrial time. Aquat Geochem 10:3–32CrossRefGoogle Scholar
  40. Liu K–K, Atkinson L, Quiñones R, Talaue-McManus L (eds) (2010) Carbon and nutrient fluxes in continental margins: a global synthesis. Global Change-The IGBP Series, Springer, BerlinGoogle Scholar
  41. Lomas MW, Glibert PG, Shiah FK, Smith E (2002) Microbial processes and temperature in Chesapeake Bay: current relationships and potential impacts of regional warming. Global Change Biol 8:51–70CrossRefGoogle Scholar
  42. Lueker TJ, Dickson AG, Keeling CD (2000) Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2; validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar Chem 70:105–119CrossRefGoogle Scholar
  43. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J, Siegenthaler U, Raynaud D (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382CrossRefGoogle Scholar
  44. Mackenzie FT (2003) Our changing planet, 3rd edn. Prentice, Upper Saddle RiverGoogle Scholar
  45. Mackenzie FT, Lerman A (2006) Carbon in the geobiosphere—earth’s outer shell. Springer, New York 402 ppGoogle Scholar
  46. Mackenzie FT, Bewers JM, Charlson RJ, Hofmann EE, Knauer GA, Kraft JC, Nöthig E-M, Quack B, Walsh JJ, Whitfield M, Wollast R (1991) What is the importance of ocean margin processes in global change? In: Mantoura RFC, Martin J-M, Wollast R (eds) Ocean margin processes in global change. Wiley, NY, pp 433–454Google Scholar
  47. Mackenzie FT, Lerman A, Ver LM (1998) Role of the continental margin in the global carbon balance during the past three centuries. Geology 26:423–426CrossRefGoogle Scholar
  48. Mackenzie FT, Lerman A, Ver LM (2001) Recent past and future of the global carbon cycle. In: Gerhard L, Hanson B, Harrison W (eds) Geological perspectives of global climate change. Am. Assoc. Pet. Geologists Special Publication 47, pp 51–82Google Scholar
  49. Mackenzie FT, Lerman A, Andersson AJ (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1:11–32CrossRefGoogle Scholar
  50. Mackenzie FT, Andersson A, Lerman A, Ver LM (2005) Boundary exchanges in the global coastal margin: implications for the organic and inorganic carbon cycles. In: Robinson AR, Brink KH (eds) The sea, 13, Chapter 7. Harvard University Press, Cambridge, pp 193–225Google Scholar
  51. Mackenzie FT, Lerman A, De Carlo EH (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Heip C, Philippart K, Middelburg J (eds) Treatise on Coastal and Estuarine Science, Chapter 5.12. Elsevier (in press)Google Scholar
  52. Mantoura RFC, Martin JM, Wollast R, Jickells TD (eds) (1991) Ocean margin processes in global change: report of the Dahlem workshop on ocean margin processes in global change, Berlin, 1990. Wiley, New York 469 ppGoogle Scholar
  53. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  54. Meybeck M (1979) Concentrations des eaux fluviales en éléments majeurs et apports en solution aux oceans. Rev Géol Dynam Géog Phys 21:217–246Google Scholar
  55. Meybeck M (1984) Les fleuves et le cycle géochmique des elements, Thèse de Doctorat d’Etat ès Sciences Naturelles. No 84-35, Université Pierre et Marie Curie, ParisGoogle Scholar
  56. Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428CrossRefGoogle Scholar
  57. Meybeck M (2003) Global analysis of river systems: from earth system controls to Anthropocene controls. Philos Trans R Acad Lond B 358(1440):1935–1955CrossRefGoogle Scholar
  58. Meybeck M, Ragu A (1995) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients, United Nations Environment Programme, ii + 245 ppGoogle Scholar
  59. Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cycles 7:927–957CrossRefGoogle Scholar
  60. Milliman JD (1997) Blessed dams or damned dams? Nature 386:325–326CrossRefGoogle Scholar
  61. Milliman JD (2001) Delivery and fate of fluvial water and sediment to the sea: a marine geologist’s view of European rivers. Sci Marina 65:121–132Google Scholar
  62. Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21CrossRefGoogle Scholar
  63. Montaggioni L (2000) Postglacial reef growth. Comptes Rendus de l’Académie des Sciences Serie II Fascicule A-Sciences de la Terre et des Planètes 331:319–330Google Scholar
  64. Morse JW, Arvidson RS (2002) Dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84CrossRefGoogle Scholar
  65. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, Amsterdam, pp 1–707Google Scholar
  66. Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830CrossRefGoogle Scholar
  67. Munhoven G (1997) Modelling glacial-interglacial atmospheric CO2 variations : the role of continental weathering. PhD thesis, Université de Liège, Liège, BelgiumGoogle Scholar
  68. Munhoven G (2002) Glacial-interglacial changes of continental weathering: estimates of the related CO2 and HCO3 flux variations and their uncertainties. Global Planet Change 33(2–3):155–176CrossRefGoogle Scholar
  69. Munhoven G (2007) Glacial–interglacial rain ratio changes: implications for atmospheric CO2 and ocean–sediment interaction. Deep Sea Res Part II Top Stud Oceanogr 54:722–746. doi: 10.1016/j.dsr2.2007.01.008 CrossRefGoogle Scholar
  70. Otto D, Rasse D, Kaplan J, Warnant P, François L (2002) Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures. Global Planet Change 33(2–3):117–138CrossRefGoogle Scholar
  71. Peltier WR, Fairbanks RG (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat Sci Rev 25:3322–3337CrossRefGoogle Scholar
  72. Petit J-R, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov V, Lorius C, Pépin L, Ritz C, Salzman E, Stievenard M (1999) Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  73. Robinson AR, Brink KH (eds) (1998) The global coastal ocean: regional studies and syntheses. The sea, vol. 11. Wiley, New York, NYGoogle Scholar
  74. Robinson AR, Brink KH (eds) (2005) The global coastal ocean: multiscale interdisciplinary processes. The sea, vol. 13. Harvard University Press, Cambridge, MAGoogle Scholar
  75. Ruddiman WF (2001) Earth’s climate: past and future. W. H. Freeman and Sons, New YorkGoogle Scholar
  76. Sand-Jensen K, Pedersen NL, Søndergaard M (2007) Bacterial metabolism in small temperate streams under contemporary and future climates. Freshw Biol 52(12):2340–2353CrossRefGoogle Scholar
  77. Shiklomanov IA (1993) World fresh water resources. In: Gleick PH (ed) Water in crisis; a guide to the world’s fresh water resources. Oxford University Press, New York, pp 13–24Google Scholar
  78. Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle—climate relationship during the Late Pleistocene. Science 310:1313–1317CrossRefGoogle Scholar
  79. Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606, 5 ppGoogle Scholar
  80. Smith SV (1985) Physical, chemical and biological characteristics of CO2 gas flux across the air-water interface. Plant Cell Environ 8:387–398CrossRefGoogle Scholar
  81. Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89CrossRefGoogle Scholar
  82. Smith SV, Veeh HH (1989) Mass balance of biogeochemically active materials (C, N, P) in a hypersaline gulf. Estuar Coast Shelf Sci 29:195–215CrossRefGoogle Scholar
  83. Turner RK, Adger WN (1996) Coastal zone resources assessment guidelines: Texel, The Netherlands, Land-Ocean Interactions in the Coastal Zone Core Project of the IGBP, 101 ppGoogle Scholar
  84. UCAR (University Corporation for Atmospheric Research)/Office for Interdisciplinary Earth Studies (OIES) (1991) Science capsule, changes in time in the temperature of the earth. EarthQuest, spring, vol 5, no 1Google Scholar
  85. Vecsei A, Berger WH (2004) Increase of atmospheric CO2 during deglaciation: constraints on the coral reef hypothesis from pattern of deposition. Global Biogeochem Cycles. 18:GB1035Google Scholar
  86. Velbel MA (1993) Temperature dependence of silicate weathering in nature: how strong a negative feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming? Geology 21:1059–1062CrossRefGoogle Scholar
  87. Ver LM, Mackenzie FT, Lerman A (1999) Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries. Chem Geol 159:283–304CrossRefGoogle Scholar
  88. Wahlen M (2002) Carbon-isotopic composition of atmospheric CO2 since the Last Glacial Maximum, National Snow and Ice Data Center, digital media, Boulder, Colo. http://nsidc.org/data/docs/agdc/nsidc0108_wahlen/index.html
  89. Walsh JJ (1991) Importance of continental margins in the marine biogeochemical cuycling of carbon and nitrogen. Nature 350:53–55CrossRefGoogle Scholar
  90. Ware JR, Smith SV, Reaka-Kudla ML (1992) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–130CrossRefGoogle Scholar
  91. Wollast R (1994) The relative importance of bioremineralization and dissolution of CaCO3 in the global carbon cycle. In: Doumenge F, Allemand D, Toulemont A (eds) Past and present biomineralization processes: considerations about the carbonate cycle. Musée Océanographique, Monaco, pp 13–34Google Scholar
  92. Wollast R (1998) Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink KH, Robinson AR (eds) The sea: the global coastal ocean, vol. 10. Wiley, New York, pp 213–252Google Scholar
  93. Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, vol 65, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Abraham Lerman
    • 1
  • Michael Guidry
    • 2
    Email author
  • Andreas J. Andersson
    • 3
  • Fred T. Mackenzie
    • 2
  1. 1.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA
  2. 2.Department of OceanographyUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.Scripps Institution of OceanographyUniversity of California at San DiegoSan DiegoUSA

Personalised recommendations