Aquatic Geochemistry

, 17:841 | Cite as

Diel Aquatic CO2 System Dynamics of a Bermudian Mangrove Environment

  • John A. ZablockiEmail author
  • Andreas J. Andersson
  • Nicholas R. Bates
Original Paper


Mangrove ecosystems play an important, but understudied, role in the cycling of carbon in tropical and subtropical coastal ocean environments. In the present study, we examined the diel dynamics of seawater carbon dioxide (CO2) and dissolved oxygen (DO) for a mangrove-dominated marine ecosystem (Mangrove Bay) and an adjacent intracoastal waterway (Ferry Reach) on the island of Bermuda. Spatial and temporal trends in seawater carbonate chemistry and associated variables were assessed from direct measurements of dissolved inorganic carbon, total alkalinity, dissolved oxygen (DO), temperature, and salinity. Diel pCO2 variability was interpolated across hourly wind speed measurements to determine variability in daily CO2 fluxes for the month of October 2007 in Bermuda. From these observations, we estimated rates of net sea to air CO2 exchange for these two coastal ecosystems at 59.8 ± 17.3 in Mangrove Bay and 5.5 ± 1.3 mmol m−2 d−1 in Ferry Reach. These results highlight the potential for large differences in carbonate system functioning and sea-air CO2 flux in adjacent coastal environments. In addition, observation of large diel variability in CO2 system parameters (e.g., mean pCO2: 390–2,841 μatm; mean pHT: 8.05–7.34) underscores the need for careful consideration of diel cycles in long-term sampling regimes and flux estimates.


Mangrove CO2 Diel Gas flux Coastal ocean 



We would like to thank David Cook, Marlene Jefferies, Roger Meyer, and Keven Neely for their assistance in the field and in the laboratory. We would also like to thank two anonymous reviewers, whose comments helped improve the manuscript. This research was supported in part by the Research Experience for Undergraduates (REU) Program from the National Science Foundation.


  1. Abril G, Commarieu MV, Sottolichio A, Bretel P, Guérin F (2009) Turbidity limits gas exchange in a large macrotidal estuary. Estuar Coast Shelf Sci 83:324–348CrossRefGoogle Scholar
  2. Alongi DM, Sasekumar A, Tirendi F, Dixon P (1998) The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. J Exp Marine Biol Ecol 225:197–218CrossRefGoogle Scholar
  3. Alongi DM, Wattayakorn G, Pfitzner J, Tirendi F, Zagorskis I, Brunskill GJ, Davidson A, Clough BF (2001) Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand. Marine Geol 179:85–103CrossRefGoogle Scholar
  4. Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecol Prog Ser 373:265–273. doi: 10.3354/meps07369 CrossRefGoogle Scholar
  5. Bates NR, Michaels AF, Knap AH (1996) Alkalinity changes in the Sargasso sea: geochemical evidence of calcification? Mar Chem 51:347–358. doi: 10.1016/0304-4203(95)00068-2 CrossRefGoogle Scholar
  6. Biswas H, Mukhopadhyay SK, De TK, Sen S, Jana TK (2004) Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India. Limnol Oceanogr 49:342–348CrossRefGoogle Scholar
  7. Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28(1):3–27CrossRefGoogle Scholar
  8. Borges AV, Djenidi S, Lacroix G, Theate J, Delille B, Frankignoulle M (2003) Atmospheric CO2 flux from mangrove surrounding waters. Geophys Res Lett 30(11):121–124CrossRefGoogle Scholar
  9. Bouillon S, Middleburg JJ, Dehairs F, Borges AV, Abril G, Flindt MR, Ulomi S, Kristensen E (2007a) Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Limnol Oceanogr 52(1):45–59CrossRefGoogle Scholar
  10. Bouillon S, Dehairs F, Schiettecatte LS, Borges AV (2007b) Biogeochemistry of the Tana estuary and delta (northern Kenya). Limnol Oceanogr 52:46–57CrossRefGoogle Scholar
  11. Bouillon S, Borges AV, Castañeda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH, Smith-III TJ, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cy 22: GB2013. doi: 10.1029/2007GB003052
  12. Cai W-J, Wang Y (1998) The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altmaha Rivers, Georgia. Limnol Oceanogr 43:657–668CrossRefGoogle Scholar
  13. Cai W-J, Pomeroy LR, Moran MA, Wang Y (1999) Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern US. Limnol Oceanogr 44:639–649CrossRefGoogle Scholar
  14. Chen CTA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Res II 56(8–10):578–581. doi: 10.1016/j.dsr2.2009.01.001 CrossRefGoogle Scholar
  15. Dickson AG (2010) The carbon dioxide system in seawater: equilibrium chemistry and measurements. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide to best practices in ocean acidification research and data reporting. Office for Official Publications of the European Communities, Luxembourg, pp 17–40Google Scholar
  16. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 38:1733–1743Google Scholar
  17. Dickson AG, Riley JP (1978) The effect of analytical error on the evaluation of the components of the aquatic carbon-dioxide system. Mar Chem 6:77–85CrossRefGoogle Scholar
  18. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization, Sidney, PICES special publication 3Google Scholar
  19. Friederich GE, Walz PM, Burczynski MG, Chavez FP (2002) Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño- La Niña event. Prog Oceanogr 54:185–203CrossRefGoogle Scholar
  20. Garcia HE, Gordon LI (1992) Oxygen solubility in seawater: better fitting equations. Limnol Oceanogr 376(6):1307–1312CrossRefGoogle Scholar
  21. Giril C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2010) Status and distribution of mangrove forests of the world using earth observation satellite. Global Ecol Biogeogr 20(1):154–159. doi: 10.1111/j.1466-8238.2010.00584.x CrossRefGoogle Scholar
  22. Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P (2006) Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys Res Lett 33:L1611. doi: 10.1029/2006GL026817 Google Scholar
  23. Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30CrossRefGoogle Scholar
  24. Knap AH, Michaels AF, Dow RL, Johnson RJ, Gundersen K, Sorensen JC, Close A, Howse F, Hammer M, Bates NR, Doyle A, Waterhouse T (1993) BATS methods manual, version 3. US JGOFS Planning Office, Woods HoleGoogle Scholar
  25. Knap AH, Michaels AF, Steinberg DK, Bahr F, Bates NR, Bell S, Countway P, Close AR, Doyle AP, Dow RL, Howse FA, Gundersen K, Johnson RJ, Kelly R, Little R, Orcutt K, Parsons R, Rathburn C, Sanderson M, Stone S (1997) BATS Methods manual, version 4. US JGOFS Planning Office, Woods HoleGoogle Scholar
  26. Koné YJ-M, Borges AV (2008) Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Estuar Coast Shelf Sci 77:409–421CrossRefGoogle Scholar
  27. Kristensen E, Andersen FØ, Holmbe N, Holmer M, Thongtham N (2000) Carbon and nitrogen mineralization in sediments of Bangrong mangrove area, Phuket, Thailand. Aquat Microb Ecol 22:199–213CrossRefGoogle Scholar
  28. Kristensen E, Flindt MR, Ulomi S, Borges AV, Abril G, Bouillon S (2008) Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Mar Ecol Prog Ser 370:53–67CrossRefGoogle Scholar
  29. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. US Department of Energy, Oak Ridge, TennesseGoogle Scholar
  30. Mackenzie FT, Andersson AJ (2011) Biological control on diagenesis: influence of bacteria and relevance to ocean acidification. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht, pp 137–143Google Scholar
  31. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  32. Michaels AF, Knap AH (1996) Overview of the US JGOFS Bermuda atlantic time-series study and the hydrostation S program. Deep Sea Res II 43:157–198CrossRefGoogle Scholar
  33. Middelburg JJ, Nieuwenhuize J, Slim FJ, Ohowa B (1996) Sediment biogeochemistry in an East African mangrove forest (Gazi Bay, Kenya). Biogeochemistry 34:133–155CrossRefGoogle Scholar
  34. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elseiver, AmsterdamGoogle Scholar
  35. Mukhopadhyay S, Biswas H, De TK, Sen BK, Sen S, Jana TK (2002) Impact of Sundarban mangrove biosphere on the carbon dioxide and methane mixing ratio at the NE coast of Bay of Bengal, India. Atmos Environ 36:629–638CrossRefGoogle Scholar
  36. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob Biogeochem Cy 14:373–387CrossRefGoogle Scholar
  37. Ovalle ARC, Rezende CE, Lacerda LD, Silva CAR (1990) Factors affecting the hydrochemistry of a mangrove creek, Sepetiba Bay Brazil. Estuar Coast Shelf Sci 31:639–650CrossRefGoogle Scholar
  38. Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH (2001) The US JGOFS Bermuda atlantic time-series study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res II 48(8–9):1405–1447. doi: 10.1016/S0967-0645(00)00148-X CrossRefGoogle Scholar
  39. Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangrove forests and their implications to the carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288CrossRefGoogle Scholar
  40. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar
  41. Weiss RF (1974) Carbon dioxide in water and seawater; the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar
  42. Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359CrossRefGoogle Scholar
  43. Zappa CJ, Raymond PA, Terray EA, McGillis WR (2003) Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26:1401–1415CrossRefGoogle Scholar
  44. Zappa CJ, McGillis WR, Raymond PA, Edson EJB, Hinsta EJ, Zemmelink HJ, Dacey JWH, Ho DT (2007) Environmental turbulent mixing controls on airwater gas exchange in marine and aquatic systems. Geophys Res Lett 34:L10601. doi: 1029/2006GL028790 CrossRefGoogle Scholar
  45. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elseiver, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • John A. Zablocki
    • 1
    Email author
  • Andreas J. Andersson
    • 1
    • 2
  • Nicholas R. Bates
    • 1
  1. 1.Bermuda Institute of Ocean SciencesSt. George’sBermuda
  2. 2.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA

Personalised recommendations