Advertisement

Aquatic Geochemistry

, Volume 17, Issue 1, pp 71–108 | Cite as

Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution

  • Tiziano Boschetti
  • Lorenzo Toscani
  • Orfan Shouakar-Stash
  • Paola Iacumin
  • Giampiero Venturelli
  • Claudio Mucchino
  • Shaun K. Frape
Original Paper

Abstract

The salt waters from the Emilia-Romagna sector of the Northern Apennine Foredeep have been investigated using major and trace element and stable isotope (δ2H, δ18O, δ37Cl, δ81Br and 87Sr/86Sr ratio). Ca, Mg, Na, K, Sr, Li, B, I, Br and SO4 vs. Cl diagrams suggest the subaerial evaporation of seawater beyond gypsum and before halite precipitation as primary process to explain the brine’s salinity, whereas saline to brackish waters were formed by mixing of evaporated seawater and water of meteoric origin. A diagenetic end-member may be a third component for mud volcanoes and some brackish waters. Salinization by dissolution of (Triassic) evaporites has been detected only in samples from the Tuscan side of the Apennines and/or interacting with the Tuscan Nappe. In comparison with the seawater evaporation path, Ca–Sr enrichment and Na–K–Mg depletion of the foredeep waters reveal the presence of secondary processes such as dolomitization–chloritization, zeolitization–albitization and illitization. Sulfate concentration, formerly buffered by gypsum-anhydrite deposition, is heavily lowered by bacterial and locally by thermochemical reduction during burial diagenesis. From an isotopic point of view, data of the water molecule confirm mixing between seawater and meteoric end-members. Local 18O-shift up to +11‰ at Salsomaggiore is related to water–rock interaction at high temperature (≈150°C) as confirmed by chemical (Mg, Li, Ca distribution) and isotopic (SO4–H2O) geothermometers. 37Cl/35Cl and 81Br/79Br ratios corroborate the marine origin of the brines and evidence the diffusion of halogens from the deepest and most saline aquifers toward the surface. The 87Sr/86Sr ratio suggests a Miocene origin of Sr and rule out the hypothesis of a Triassic provenance of the dissolved components for the analyzed waters issuing from the Emilia-Romagna sector of the foredeep. Waters issuing from the Tuscan side of the Apennines and from the Marche sector of the foredeep show higher 87Sr/86Sr ratios because of the interaction with siliciclastic rocks.

Keywords

Salt waters Chemical and isotope composition Seawater evaporation Northern Apennine Foredeep 

Notes

Acknowledgments

The work was partly funded by the MURST-PRIN2005 project. Many thanks to all University of Parma fellows involved in the analytical works: Monica Maffini and Marinella Chierici for support on chemical, Silvia Vaccari for radon, Enrico Selmo for water isotope analyses. Special thanks to Liliana Krotz and Guido Giazzi, Thermo Scientific—Rodano, Milano, for total C and total N analyses. Reviews by two anonymous referees were greatly appreciated.

Supplementary material

10498_2010_9107_MOESM1_ESM.xls (140 kb)
Supplementary material 1 (XLS 138 kb)

References

  1. AGIP Mineraria (1959) I giacimenti gassiferi dell’Europa Occidentale. Accademia Nazionale dei Lincei and ENI, RomaGoogle Scholar
  2. Apha-Awwa-Wef (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, American Water Works Association, Water Environment Federation, USAGoogle Scholar
  3. Appelo CAJ (2002) Calculating the fractionation of isotopes in hydrochemical (transport) processes with PHREEQC-2. In: Schulz HD, Hadeler A (eds) Geochemical processes in soil and groundwater. GeoProc, Wiley-VCH, Weinheim, pp 383–398Google Scholar
  4. Argnani A, Ricci Lucchi F (2001) Tertiary silicoclastic turbidite systems of the Northern Apennine. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the apennines and adjacent mediterranean basins. Kluwer, Dordrecht, pp 327–349Google Scholar
  5. Artoni A, Papani G, Rizzini F, Calderoni M, Bernini M, Argnani A, Roveri M, Rossi M, Rogledi S, Gennari R (2004) The Salsomaggiore structure (Northwestern Apennine foothills, Italy): a Messinian mountain front shaped by mass-wasting products. Geo Acta 3:107–127Google Scholar
  6. Artoni A, Rizzini F, Roveri M, Gennari R, Manzi V, Papani G, Bernini M (2007) Tectonic and Climatic Controls on Sedimentation in Late Miocene Cortemaggiore Wedge-Top Basin (Northwestern Apennines, Italy). In: Lacombe O, Lavé J, Roure F, Vergés J (eds) Thrust belts and foreland basins—from fold kinematics to hydrocarbon systems. Frontiers In Earth Sciences. Springer, Berlin, pp 431–456Google Scholar
  7. Artusi GC, De Marchi A, Marenghi I, Tagliavini S, Zanzucchi G (1977) The mineral waters of the Parma province. Origin composition and classification. Università degli Studi di Parma, ItalyGoogle Scholar
  8. Bein A, Dutton AR (1993) Origin, distribution, and movement of brine in the Permian Basin (U.S.A.): a model for displacement of connate brine. Geol Soc Am Bull 105:695–707CrossRefGoogle Scholar
  9. Bellanca A, Neri R (1986) Evaporite carbonate cycles of the Messinian, Sicily: stable isotopes, mineralogy, textural features, and environmental implications. J Sediment Petrol 56:614–621Google Scholar
  10. Bellia S, Censi P (1985) Il Messiniano evaporitico della Sicilia Orientale: l’ambiente di formazione dei gessi di Calatabiano (CT) sulla base di evidenza tessiturali e geochimica-isotopiche. Miner Petrogr Acta 29:61–74Google Scholar
  11. Bencini A, Duchi V, Martini M (1977) Geochemistry of thermal springs of Tuscany (Italy). Chem Geol 19:229–252CrossRefGoogle Scholar
  12. Bonini M (2007) Interrelations of mud volcanism, fluid venting, and thrust-anticline folding: Examples from the external northern Apennines (Emilia-Romagna, Italy). J Geophys Res 112:B08413. doi: 10.1029/2006JB004859 CrossRefGoogle Scholar
  13. Borgia GC, Elmi C, Ricchiuto T (1988) Correlation by genetic properties of the shallow gas seepages in the Emilian Apennines (Northern Italy), in Advances in Organic Geochemistry 1987. Org Geochem 13:319–324CrossRefGoogle Scholar
  14. Boschetti T (2003) Studio geochimico e geochimico-isotopico di acque a composizione estrema e termali dell’Appennino Settentrionale. Dissertation, University of Parma, ItalyGoogle Scholar
  15. Boschetti T, Venturelli G, Toscani L, Barbieri M, Mucchino C (2005) The Bagni di Lucca thermal waters (Tuscany, Italy): an example of Ca-SO4 waters with high Na/Cl and low Ca/SO4 ratios. J Hydrol 307(1–4):270–293CrossRefGoogle Scholar
  16. Boschetti T, Cortecci C, Toscani L, Iacumin P (2010) Sulfur and oxygen isotope compositions of Upper Triassic sulfates from Northern Apennines (Italy): palaeogeographic and hydrogeochemical implications. Geologica Acta (in press)Google Scholar
  17. Böttcher ME, Brumsack HJ, De Lange GJ (1998) Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters of the eastern Mediterranean. In: Robertson AHF, Emeis KC, Richter C, Camerlenghi A (eds) Proceedings of the ocean drilling program, scientific results 160, College Station, TX, pp 365–373Google Scholar
  18. Böttcher ME, Bernasconi S, Brumsack HJ (1999) Carbon, sulfur and oxygen isotope geochemistry in interstitial waters from the western Mediterranean. In: Zahn R, Comas MC, Klaus A (eds) Proceedings of the Ocean Drilling Program, Scientific Results 161, College Station, TX, pp 413–422Google Scholar
  19. Brunner B, Bernasconi S, Kleikemper J, Schroth MH (2005) A model for oxygen and sulphur isotope fractionation in sulfate during bacterial sulfate reduction processes. Geochim Cosmochim Acta 20:4733–4785Google Scholar
  20. Capozzi R, Picotti V (2002) Fluid migration and origin of a mud volcano in the Northern Apennines (Italy): the role of deeply rooted normal faults. Terra Nova 14:363–370CrossRefGoogle Scholar
  21. Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. Oklah Geol Surv Circ 79:60–77Google Scholar
  22. Cataldi R, Mongelli F, Squarci P, Taffi L, Zito G, Calore C (1995) Geothermal ranking of Italian territory. Geothermics 24:115–129CrossRefGoogle Scholar
  23. Censi P (1984) Isotopic composition of water of crystallization of Sicilian selenitic gypsum crystals: interpretation of observed variations. Miner Petrogr Acta 28:139–153Google Scholar
  24. Censi P (1986) Frazionamento isotopico dell’ossigeno nell’acqua di cristallizzazione dei gessi e kainite di origine evaporitica. Rend Soc It Min Petr 41:273–279Google Scholar
  25. Clark I, Fritz P (1997) Environmental Isotopes in hydrogeology. Lewis Publications, Boca RatonGoogle Scholar
  26. Conti S, Artoni A, Piola G (2007) Seep-carbonates in a thrust-related anticline at the leading edge of an orogenic wedge: The case of the middle–late Miocene Salsomaggiore Ridge (Northern Apennines, Italy). Sediment Geol 199:233–251CrossRefGoogle Scholar
  27. Coplen TB, Hanshaw BB (1973) Ultrafiltration by a compacted clay membrane–I. Oxygen and hydrogen isotopic fractionation. Geochim Cosmochim Acta 37:2295–2310CrossRefGoogle Scholar
  28. Cortecci G, Orlandi P (1975) Analisi isotopica di minerali solfatici associti a zolfo, solfuri e calcare. Rend Soc It Min Petr 31:379–398Google Scholar
  29. Cortecci G, Dinelli E, Boschetti T, Arbizzani P, Pompilio L, Mussi M (2008) The Serchio River catchment, northern Tuscany: geochemistry of stream waters and sediments, and isotopic composition of dissolved sulfate. Appl Geochem 23:1513–1543CrossRefGoogle Scholar
  30. Dählmann A, de Lange GJ (2003) Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth Planet Sc Lett 212:377–391CrossRefGoogle Scholar
  31. Davisson ML, Criss RE (1996) Na-Ca-Cl relations in basinal fluids. Geochim Cosmochim Acta 60:2743–2752CrossRefGoogle Scholar
  32. Dolenec T, Pezdic J, Herlec U (1996) Stable isotope study of the Adriatic Sea. Acta Geol Hung 39 (Isotope Workshop III Suppl):35-38Google Scholar
  33. Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  34. Duchi V, Venturelli G, Boccasavia I, Bonicolini F, Ferrari C, Poli D (2005) Studio geochimico dei fluidi dell’Appennino Tosco-Emiliano-Romagnolo. Boll Soc Geol It 124:475–491Google Scholar
  35. Eggenkamp HGM (1994) The geochemistry of chlorine isotopes. Ph.D. Thesis. University of Utrecht, The NetherlandsGoogle Scholar
  36. Eggenkamp HGM, Coleman ML (2009) The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim Cosmochim Acta 73:3539–3548CrossRefGoogle Scholar
  37. El Mugammar H, Shouakar-Stash O (2008) Strontium isotope analysis. Technical Procedure, Environmental Isotope Laboratory, Department of Earth and Environmental Sciences, University of Waterloo, WaterlooGoogle Scholar
  38. Emilia-Romagna R, ENI – AGIP (1998) Riserve idriche sotterranee della Regione Emilia-Romagna. In: Di Dio G (ed.) S.EL.CA, Firenze, pp 120Google Scholar
  39. Epstein S, Mayeda T (1953) Variations of 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  40. Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France. 1. Brines associated with Triassic salts. Chem Geol 109:149–175CrossRefGoogle Scholar
  41. Fritz P, Basharmal GM, Drimmie RJ, Ibsen J, Qureshi RM (1989) Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem Geol (Isot Geosc Sec) 79:99–105CrossRefGoogle Scholar
  42. Galley MR, Miller AI, Atherley JF, Mohn M (1972) GS process-physical properties. Chalk River, Ontario, Canada, Atomic Energy of Canada Limited, AECL-4225Google Scholar
  43. Gat JR, Carmi I (1970) Evolution in the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048CrossRefGoogle Scholar
  44. Gavrieli I, Starinsky A, Spiro B, Ainzenshtat Z, Nielsen H (1995) Mechanisms of sulfate removal from subsurface calcium chloride brines; Heletz-Kokhav oilfields, Israel. Geochim Cosmochim Acta 59:3525–3533CrossRefGoogle Scholar
  45. Gran G (1952) Determination of the equivalence point in in the potentiometric titrations. Analyst 77:661–671CrossRefGoogle Scholar
  46. Hanor JS (1987) Origin and migration of subsurface sedimentary brines. SEPM Short Course No. 21, U.S.AGoogle Scholar
  47. Horita J (2009) Isotopic evolution of saline lakes in the low-latitude and polar regions. Aquat Geochem 15:43–69CrossRefGoogle Scholar
  48. Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim Cosmochim Acta 58:3425–3437CrossRefGoogle Scholar
  49. Horita J, Cole DR, Wesolowski DJ (1993) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications. Geochim Cosmochim Acta 57:4703–4711CrossRefGoogle Scholar
  50. Hutcheon I (2002) Principles of diagenesis and what drives mineral change. In: Kyser K (ed) Fluids and basin evolution, short course series, vol 28. Mineralogical Association of Canada, Ottawa, pp 93–114Google Scholar
  51. Hyeong K, Capuano RM (2001) Ca/Mg of brines in Miocene/Oligocene clastic sediments of the Texas Gulf Coast: buffering by calcite/disordered dolomite equilibria. Geochim Cosmochim Acta 65:3065–3080CrossRefGoogle Scholar
  52. Hyeong K, Capuano RM (2004) Hydrogen isotope fractionation factor for mixed-layer illite/smectite at 60° to 150°C: new data from the northeast Texas Gulf Coast. Geochim Cosmochim Acta 68:1529–1543CrossRefGoogle Scholar
  53. Iacumin P, Venturelli G, Burroni B, Toscani L, Selmo E (2007) The S. Andrea Bagni waters (Province of Parma): origin, mixing with high-salinity waters and inferences on climatic microvariations. Mem Descrittive Carta Geol Italia 76:219–228Google Scholar
  54. Iacumin P, Venturelli G, Selmo E (2009) Isotopic features of rivers and groundwater of the Parma Province (Northern Italy) and their relationships with precipitation. J Geochem Expl 102:56–62CrossRefGoogle Scholar
  55. Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCollin TH (eds) Thermal history of sedimentary basins. Springer-Verlag, New York, pp 99–117Google Scholar
  56. Land LS, Macpherson GL (1992) Geothermometry from brine analyses: lessons from the Gulf Coast, U.S.A. Appl Geochem 7:333–340CrossRefGoogle Scholar
  57. Lloyd RM (1967) Oxygen-18 composition of oceanic sulfate. Science 156:1228–1231CrossRefGoogle Scholar
  58. Long G, Neglia S (1968) Composition de l’eau interstitielle des argiles et diagenèse des minéraux argileux. Revue de l’Institut Français du Pétrole 23:53–70Google Scholar
  59. Longinelli A (1979) Isotope geochemistry of some messinian evaporites: paleoenvironmental implications. Palaeogeogr Palaeocl 29:95–123CrossRefGoogle Scholar
  60. Longinelli A, Flora O (2007) Isotopic composition of gypsum samples of Permian and Triassic age from the northeastern Italian Alps: palaeoenvironmental implications. Chem Geol 245:275–284CrossRefGoogle Scholar
  61. Longinelli A, Ricchiuto TE (1977) Il ruolo delle acque meteoriche durante la crisi di salinità del Messiniano. Boll Soc Geol It 96:423–428Google Scholar
  62. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88CrossRefGoogle Scholar
  63. Longstaffe FJ (2000) An introduction to stable oxygen and hydrogen isotopes and their use as fluid tracers in sedimentary systems. In: Kyser K (ed) Fluids and basin evolution, short course series, vol 28. Mineralogical Association of Canada, Ottawa, pp 115–162Google Scholar
  64. Lu FH, Meyers WJ (2003) Sr, S, and OSO4 Isotopes and the Depositional Environments of the Upper Miocene Evaporites, Spain. J Sediment Res 73:444–450CrossRefGoogle Scholar
  65. Lu FH, Meyers WJ, Schoonen MA (2001) S and O isotopes and their quantitative modeling of late Miocene gypsum, Nijar, Spain. Geochim Cosmochim Acta 65:3081–3092CrossRefGoogle Scholar
  66. Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings–old and new insights. Sediment Geol 140:143–175CrossRefGoogle Scholar
  67. Maekawa T, Imai N (2000) Hydrogen and oxygen isotope fractionation in water during gas hydrate formation. In: Holder GD, Bishnoi PR (eds) Gas hydrates: challenges for the future, Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 452–459Google Scholar
  68. Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids–implications for fluids origins. Geochim Cosmochim Acta 57:4377–4389CrossRefGoogle Scholar
  69. Martinelli G, Dadomo A (2005) Geochemical model of mud volcanoes from reviewed worldwide data. In: Martinelli G, Panahi B (eds) Mud volcanoes, geodynamics and seismicity. Springer, the Netherlands, pp 211–220CrossRefGoogle Scholar
  70. Matano F, Barbieri M, Di Nocera S, Torre M (2005) Stratigraphy and strontium geochemistry of Messinian evaporite-bearing successions of the southern Apennines foredeep, Italy: implications for the Mediterranean “salinity crisis” and regional palaeogeography. Palaeogeo, Palaeocl, Palaeoec 217:87–114CrossRefGoogle Scholar
  71. Mattavelli L, Margarucci V (1992) Malossa Field–Italy, Po Basin. In: Foster NH, Beaumont EA (eds) Treatise of petroleum geology, atlas of oil and gas field, structural traps VII. American Association of Petroleum Geologists, Tulsa, pp 119–133Google Scholar
  72. Mattavelli L, Ricchiuto T, Grignani D, Schoell M (1983) Geochemistry and habitat of natural gases in Po Basin, Northern Italy. AAPG Bull 67:2239–2254Google Scholar
  73. McArthur JM, Howart RJ, Bayley TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170CrossRefGoogle Scholar
  74. Milliken KL, McBride EF, Cavazza W, Cibin U, Fontana D, Picard MD, Zuffa GG (1998) Geochemical history of calcite precipitation in Tertiary sandstones, Northern Apennines, Italy. In: Morad S (ed) Carbonate Cementation in Sandstones, IAS Special vol 26, pp 213–240Google Scholar
  75. Molli G (2008) Northern Apennine-Corsica orogenic system: an updated overview. In: Diegesmund S, Füdenschuh B, Froitzheim N (eds) “Tectonic aspects of the Alpine-Dinaride-Carpathian System”. Geol. Soc. London Spec. Pub. 298, pp 413–442Google Scholar
  76. Morad S, Worden RH, Ketzer JM (2003) Oxygen and hydrogen isotope composition of diagenetic clay minerals in sandstones: a review of the data and controls. In: Worden RH and Morad S (eds) Clay Mineral Cement in Sandstones, IAS Special vol 34, pp 63–92Google Scholar
  77. Nadler A, Magaritz M (1980) Studies of marine solution basins—isotopic and compositional changes during evaporation. In: Nissenbaum A (ed) Hypersaline brines and evaporitic environments, developments in sedimentology. Elsevier, Amsterdam, pp 115–129CrossRefGoogle Scholar
  78. Nanni T, Vivalda P (1999) Le acque salate dell’avanfossa marchigiana: origine, chimismo e caratteri strutturali delle zone di emergenza. Boll Soc Geol It 118:191–215Google Scholar
  79. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  80. Olivero GF, Zauli M, Zuppi GM, Ricchiuto TE (1987) Isotopic composition and origin of sulphur compounds in groundwaters and brines in the Po Valley (Northern Italy). In: Studies On Sulphur Isotope Variations in Nature. IAEA, Vienna, pp 49–64Google Scholar
  81. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—A computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculations. Water Resources Investigations Report, 95-4259. US Geological SurveyGoogle Scholar
  82. Picotti V, Capozzi R, Bertozzi G, Mosca F, Sitta A, Tornaghi M (2007) The Miocene Petroleum System of the Northern Apennines in the Central Po Plain (Italy). In: Lacombe O, Lavé J, Roure F, Vergés J (eds) Thrust belts and foreland basins—from fold kinematics to hydrocarbon systems. Frontiers in earth sciences. Springer, Berlin, pp 117–131Google Scholar
  83. Pieri M (1992) Cortemaggiore Field—Italy, Po plain, Northern Apennines. In: Foster NH, Beaumont EA (eds) Treatise of petroleum geology, atlas of oil and gas field, structural traps VII. AAPG, Tulsa, pp 99–118Google Scholar
  84. Pieri M (2001) Italian Petroleum Geology. I. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the apennines and adjacent mediterranean basins. Kluwer, Dordrecht, pp 533–549Google Scholar
  85. Pierre C (1982) Teneurs en isotopes stables (18O, 2H, 13C, 34S) et conditions de genèse des évaporites marines: application à quelques milieux actuels et au Messinien de Méditerranée [Doct. thesis]. Univ. Paris-Sud OrsayGoogle Scholar
  86. Pierre C, Catalano R (1976) Stable isotopes (18O, 13C, 2H) in the evaporitici sequence of the Ciminna basin (Sicily). In: Catalano R, Ruggieri G, Sprovieri R (eds) Messinian evaporites in the Mediterranean. Memorie Società Geologica Italiana 16:55–62Google Scholar
  87. Pierre C, Rouchy JM (1990) Sedimentary and diagenetic evolution of Messinian evaporites in the Tyrrhenian Sea (ODP Leg 107, Sites 652,653, and 654): petrographic, mineralogical, and stable isotope records. In: Kastens KA, Mascle J, et al (eds) Proceedings of the ocean drilling program, scientific results, 107, pp 187–210Google Scholar
  88. Ricchiuto T, McKenzie JA (1978) Stable isotope investigation of Messinian sulfate samples from DSDP Leg 42 A, eastern Mediterranean Sea. In: Hsu KJ, Montadert L et al (eds) Initial Report of the DSDP 42 (Part l). U.S. Govt. Printing Office, Washington, pp 657–660. doi: 10.2973/dsdp.proc.42-1.126-2.1978 Google Scholar
  89. Ricchiuto T, Zuppi GM, Bortolami GC, Olivero GF (1985) Le acque salate della Pianura Padana. Parte I Inquadramento Geochimico. In: Francani V, Zuppi GM (eds) Studi idrogeologici sulla Pianura Padana 1, Clup, Milano, pp 9–30Google Scholar
  90. Ricci Lucchi F (1981) The Marnoso-arenacea turbidites, Romagna and Umbria Apennines. In: Ricci Lucchi F (ed) Excursion guidebook, with contribution on sedimentology of some italian basins. 2nd IAS Eur. Meeting, Bologna, pp 229–303Google Scholar
  91. Rosenthal E (1997) Thermomineral water of Ca-chloride composition: review of diagnostics and of brine evolution. Environ Geol 32:245–250CrossRefGoogle Scholar
  92. Rosetti E, Valenti L (2002) Terme e acque segrete dell’Emilia Romagna. Le Lettere, FirenzeGoogle Scholar
  93. Roveri M, Bassetti MA, Ricci Lucchi F (2001) The Mediterranean Messinian salinity crisis: an Apennine foredeep perspective. Sed Geol 140:201–214CrossRefGoogle Scholar
  94. Roveri M, Manzi V, Lucchi FR, Rogledi S (2003) Sedimentary and tectonic evolution of the Vena del Gesso basin (Northern Apennines, Italy): implications for the onset of the Messinian salinity crisis. Geol Soc Am Bull 115:387–405CrossRefGoogle Scholar
  95. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in moderns global precipitaion. In: Swart PK, Lohman KL, McKenzie JA, Savin S (eds) Climate change in continental isotopic record. Geoph Monograph vol. 78, pp 1–37Google Scholar
  96. Sborgi U, Galanti A, Conti Z (1936) Analisi chimica e chimico-fisica dell’acqua minerale di Fontevivo (Parma). Ann Chim Appl 26:502–515Google Scholar
  97. Schoeller H (1962) Les eaux souterraines. Masson, ParisGoogle Scholar
  98. Seal RR II, Alpers CN, Rye RO (2000) Stable isotope systematics of sulfate minerals. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, vol 40, Mineralogical Society of America and Geochemical Society, Washington, D.C., pp 541–602Google Scholar
  99. Sharp Z (2007) Principles of stable isotope geochemistry. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  100. Shouakar-Stash O, Frape SK, Drimmie RJ (2005a) Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry. Anal Chem 77:4027–4033CrossRefGoogle Scholar
  101. Shouakar-Stash O, Drimmie RJ, Frape SK (2005b) Determination of inorganic chlorine stable isotopes by Continuous Flow Isotope Ratio Mass spectrometry. Rapid Commun Mass Spectrom 19:121–127CrossRefGoogle Scholar
  102. Siemann MG, Schramm M (2000) Thermodynamic modelling of the Br partition between aqueous solutions and halite. Geochim Cosmochim Acta 64:1681–1693CrossRefGoogle Scholar
  103. Starinsky A, Bielsky M, Lazar B, Steinitz G, Raab M (1983) Strontium isotope evidence on the history of oilfield brines, Mediterranean Coastal Plain, Israel. Geochim Cosmochim Acta 47:687–695CrossRefGoogle Scholar
  104. Stewart MA, Spivack AJ (2004) The Stable-Chlorine isotope composition of natural and anthropogenic materials. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stables isotopes, Reviews in Mineralogy & Geochemistry 55. Mineralogical Society of America and the Geochemical Society, Washington D.C., pp 231–254Google Scholar
  105. Thode HG, Monster J (1965) Sulfur isotope geochemistry of petroleum, evaporites and ancient seas. In: Young A, Galley JE (eds) Fluids in Subsurface Environments, AAPG Memoir 4, Tulsa, Oklahoma, pp 367–377Google Scholar
  106. Toscani L, Venturelli G, Boschetti T (2001) Sulphide-bearing waters in Northern Apennines, Italy: general features and water rock interaction. Aquat Geochem 7:195–216CrossRefGoogle Scholar
  107. Toscani L, Boschetti T, Maffini M, Barbieri M, Mucchino C (2007) The groundwaters of Fontevivo (Parma Province, Italy): redox processes and mixing with brine waters. Geochem-Explor Env A 7:23–40CrossRefGoogle Scholar
  108. Vaccari S, Toscani L, Ortalli I, Dalledonne C, Martinelli G, Venturelli G (1999) Misure di radon in sorgenti e pozzi dell’Appennino Reggiano-Parmense. Quad Geol Appl 2:3315–3320 (1999 supplementary volume)Google Scholar
  109. Van der Weijden C (1992) Early diagenesis and marine pore water. In: Wolf KH, Chilingarian GV (eds) Diagenesis III. Elsevier, Amsterdam, pp 1–134Google Scholar
  110. Vengosh A, Starinsky A, Anati DA (1994) The origin of Mediterranean interstitial waters–relics of ancient Miocene brines: a re-evaluation. Earth Planet Sc Lett 121:613–627CrossRefGoogle Scholar
  111. Vengosh A, Gieskes J, Mahn C (2000) New evidence for the origin of hypersaline pore fluids in the Mediterranean basin. Chem Geol 163:287–298CrossRefGoogle Scholar
  112. Venturelli G (2003) Acque, minerali e ambiente. Fondamenti di geochimica dei processi di bassa temperatura. Pitagora, BolognaGoogle Scholar
  113. Venturelli G, Boschetti T, Duchi V (2003) Na-carbonate waters of extreme composition: Possible origin and evolution. Geochem J 37:351–366Google Scholar
  114. Wolery TW, Jarek RL (2003) EQ3/6, version 8.0—Software User’s Manual. Civilian Radioactive Waste Management System, Management & Operating Contractor. Sandia National Laboratories, Albuquerque, New MexicoGoogle Scholar
  115. Worden RH, Smalley PC, Oxtoby NH (1996) The effects of thermochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoirs. Geochim Cosmochim Acta 60:3925–3931CrossRefGoogle Scholar
  116. Wygrala BP (1987) Integrated computer-aided basin modeling applied to analysis of hydrocarbon generation history in a Northern Italian oil field. Org Geochem 13:187–197CrossRefGoogle Scholar
  117. Xie X, Jiu JJ, Li S, Cheng J (2003) Salinity variation of formation water and diagenesis reaction in abnormal pressure environments. Sci China Ser D 46:269–284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tiziano Boschetti
    • 1
  • Lorenzo Toscani
    • 1
  • Orfan Shouakar-Stash
    • 2
  • Paola Iacumin
    • 1
  • Giampiero Venturelli
    • 1
  • Claudio Mucchino
    • 3
  • Shaun K. Frape
    • 2
  1. 1.Department of Earth SciencesUniversity of ParmaParmaItaly
  2. 2.Department of Earth SciencesUniversity of WaterlooWaterlooCanada
  3. 3.Department of Analytical ChemistryUniversity of ParmaParmaItaly

Personalised recommendations