Advertisement

Aquatic Geochemistry

, Volume 16, Issue 3, pp 467–482 | Cite as

Fe(III) Reduction in the Presence of Catechol in Seawater

  • J. Magdalena Santana-Casiano
  • M. González-Dávila
  • A. G. González
  • F. J. Millero
Original Paper

Abstract

Fe(II)-Fe(III) redox behavior has been studied in the presence of catechol under different pH, ionic media, and organic compound concentrations. Catechol undergoes oxidation in oxic conditions producing semiquinone and quinone and reduces Fe(III) in natural solutions including seawater (SW). It is a pH-dependent process. Under darkness, the amount of Fe(II) generated is smaller and is related to less oxidation of catechol. The Fe(II) regeneration is higher at lower pH values both in SW with log k = 1.86 (M−1 s−1) at pH 7.3 and 0.26 (M−1 s−1) at pH 8.0, and in NaCl solutions with log k of 1.54 (M−1 s−1) at pH 7.3 and 0.57 (M−1 s−1) at pH 8.0. At higher pH values, rate constants are higher in NaCl solutions than in SW. This is due to the complexation of Mg(II) present in the media with the semiquinone that inhibits the formation of a second Fe(II) through the reaction of this intermediate with other center Fe(Cat)+.

Keywords

Iron Catechol Oxidation Reduction Kinetics Seawater 

Notes

Acknowledgments

This study was supported by the Project CTM2006-09857 of Ministerio de Ciencia y Tecnología from Spain. F.J. Millero wishes to acknowledge the support of the Oceanographic Section of the National Science Foundation and the National Oceanic and Atmospheric Administration for supporting his marine physical chemistry studies.

References

  1. Anderson MA, Morel FMM (1982) The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira-weissflogii. Limnol Oceanogr 27:789–813CrossRefGoogle Scholar
  2. Avdeef A, Sofen SR, Bregante TL, Raymond KN (1978) Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J Am Chem Soc 100:5362–5370CrossRefGoogle Scholar
  3. Borer PM, Sulzberger B, Reichard P, Kraemer SM (2005) Effect of siderophores on the light-induced dissolution of colloidal iron(III) (hydr)oxides. Mar Chem 93:179–193CrossRefGoogle Scholar
  4. Borer PM, Sulzberger B, Hug SJ, Kraemer SM, Kretzschmar R (2009) Photoreductive dissolution of iron(III) (hydr)oxides in absence of organic ligands: experimental studies and kinetic modelling. Environ Sci Technol 43:1864–1870CrossRefGoogle Scholar
  5. Boye M, Nishioska J, Croot PL, Laan P, Timmermans KR, de Baar HJW (2005) Major deviation of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar Chem 96:257–271CrossRefGoogle Scholar
  6. Brooksby PA, Schiel DR, Abell AD (2008) Electrochemistry of catechol terminated monolayers with Cu(II), Ni(II) and Fe(III) cations: a model for the marine adhesive interface. Langmuir 24:9074–9081CrossRefGoogle Scholar
  7. Bruland KW, Rue EL, Smith GH (2001) Iron an macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol Oceanogr 46:1661–1674CrossRefGoogle Scholar
  8. Craig P, Shaw TJ, Miller P et al (2009) Use of multiparametric techniques to quantify the effects of naturally occurring ligands on the kinetics of Fe(II) oxidation. Environ Sci Technol 43:337–342CrossRefGoogle Scholar
  9. de Baar HJW, Boyd PW, Koale KH et al (2005) Synthesis of iron fertilization experiments: from the iron age to the age of enlightenment. J Geophys Res 110:C09S16CrossRefGoogle Scholar
  10. Dhungana S, Anthony CRIII, Hersman LE (2007) Ferrihydrite dissolution by pyridine-2, 6-bis(monothiocarboxylic acid) and hydrolysis products. Geochim Cosmochim Acta 71:5651–5660CrossRefGoogle Scholar
  11. González-Dávila M, Santana-Casiano JM, Millero FJ (2005) Oxidation of iron(II) nanomolar with H2O2 in seawater. Geochim Cosmochim Acta 69:83–93CrossRefGoogle Scholar
  12. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351CrossRefGoogle Scholar
  13. Harrington JM, Crumbliss AL (2009) The redox hypothesis in siderophore-mediated iron uptake. Biometals doi: 10.1007/s10534-009-9233-4
  14. Hersman L, Lloyd T, Sposito G (1995) Siderophore-promoted dissolution of hematite. Geochim Cosmochim Acta 59:3327–3330CrossRefGoogle Scholar
  15. Hider RC, Mohd-Nor AR, Silver J (1981) Model compounds for microbial iron-transport compounds. Part 1. Solution chemistry and Mössbauer study of iron(II) and iron(III) complexes form phenolic and catecholic systems. J Sol Chem Soc Dalton Trans 1:609–622CrossRefGoogle Scholar
  16. Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393:561–564CrossRefGoogle Scholar
  17. Hutchins DA, Witter AE, Butler A, Luther GW (1999) Competition among marine phytoplankton for different chelated iron species. Nature 400:858–861CrossRefGoogle Scholar
  18. Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161CrossRefGoogle Scholar
  19. Jones GJ, Palenik BP, Morel FMM (1987) Trace-metal reduction by phytoplankton-the role of plasmalemma redox enzymes. J Phycol 23:237–244CrossRefGoogle Scholar
  20. Kim D, Duckworth OW, Strathmann TJ (2009) Hydroxamate siderophore-promoted reactions between iron(II) and nitroaromatic groundwater contaminants. Geochim Cosmochim Acta 73:1297–1311CrossRefGoogle Scholar
  21. King DW, Lounsbury HA, Millero FJ (1995) Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentration. Environ Sci Technol 29:818–824CrossRefGoogle Scholar
  22. Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18CrossRefGoogle Scholar
  23. Kuma K, Nishioka J, Matsunaga K (1996) Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol Oceanogr 41:396–407Google Scholar
  24. Liu XW, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43–54CrossRefGoogle Scholar
  25. Maldonado MT, Price NM (2001) Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J Phycol 37:298–309CrossRefGoogle Scholar
  26. Miller WL, Kester D (1994) Photochemical iron reduction and iron bioavailability in seawater. J Mar Res 52:325–343CrossRefGoogle Scholar
  27. Millero FJ (1986) The pH of estuarine waters. Limnol Oceanogr 31:839–847Google Scholar
  28. Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801CrossRefGoogle Scholar
  29. Nikolić GM, Premović PI, Nicolić RS (1998) Spectrophotometric study of catechol oxidation by aerial O2 in alkaline aqueous solutions containing Mg(II) ions. Spectrosc Lett 31:327–333CrossRefGoogle Scholar
  30. Reid RT, Butler A (1991) Investigation of the mechanism of iron acquisition by the marine bacterium Alteromonas luteoviolaceus: characterization of siderophore production. Limnol Oceanogr 36:1783–1792CrossRefGoogle Scholar
  31. Rich HW, Morel FMM (1990) Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii. Limnol Oceanogr 35:652–662CrossRefGoogle Scholar
  32. Rijkenberg MJA, Gerringa LJA, Neale PJ, Timmermans KR, Buma AGJ, de Baar HJW (2004) UVA variability overrules UVB ozone depletion effects on the photoreduction of iron in the Southern Ocean. Geophys Res Lett 31:1–5CrossRefGoogle Scholar
  33. Rijkenberg MJA, Gerringa LJA, Carolus VE, Velzeboer I, de Baar HJW (2006) Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater. Geochim Cosmochim Acta 70:2790–2805CrossRefGoogle Scholar
  34. Rijkenberg MJA, Gerringa LJA, Timmermans KR, Fischer AC, Kroon KJ, Buma AGJ, BTh Wolterbeek, de Baar HJW (2008) Enhancement of the reactive iron pool by marine diatoms. Mar Chem 109:29–44CrossRefGoogle Scholar
  35. Santana-Casiano JM, González-Dávila M, Rodríguez MJ, Millero FJ (2000) The effect of organic compounds in the oxidation kinetics of Fe(II). Mar Chem 70:211–222CrossRefGoogle Scholar
  36. Santana-Casiano JM, González-Dávila M, Millero FJ (2005) Oxidation of nanomolar level of Fe(II) with oxygen in natural waters. Environ Sci Technol 39:2073–2079CrossRefGoogle Scholar
  37. Schweigert N, Zehnder AJB, Eggen RIL (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91CrossRefGoogle Scholar
  38. Sulzberger B, Laubscher H (1995) Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution. Mar Chem 50:103–115CrossRefGoogle Scholar
  39. Takeda S, Kamatani A (1989) Photoreduction of Fe(III)-EDTA complex and its availability to the coastal diatom Thalassiosira weissflogii, Red Tides. Biol Environ Sci Toxicol 349–352Google Scholar
  40. Theis TL, Singer PC (1974) Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ Sci Technol 8:569–573CrossRefGoogle Scholar
  41. Uchimiya M, Stone AT (2006) Redox reactions between iron and quinones: thermodynamic constraints. Geochim Cosmochim Acta 70:1388–1401CrossRefGoogle Scholar
  42. Waite TD (2001) Thermodynamics of the iron system in seawater. In: Turner DR, Hunter KA (eds) The biochemistry of iron in seawater. Wiley, New York, pp 291–342Google Scholar
  43. Waite TD, Morel FMM (1984) Photoreductive dissolution of colloidal iron oxide: effect of citrate. J Colloid Interface Sci 102:121–137CrossRefGoogle Scholar
  44. Wells ML (1999) Manipulating iron availability in nearshore waters. Limnol Oceanogr 44:1002–1008CrossRefGoogle Scholar
  45. Wells ML, Mayer LM (1991) The photoconversion of colloidal iron oxyhydroxides in seawater. Deep Sea Res 38:1379–1395CrossRefGoogle Scholar
  46. Wells ML, Zorkin NG, Lewis AG (1983) The role of colloid chemistry in providing a source of iron to phytoplankton. J Mar Res 41:731–746CrossRefGoogle Scholar
  47. Wells ML, Price NM, Bruland KW (1994) Iron limitation and the Cyanobacterium synechococcus in equatorial Pacific waters. Limnol Oceanogr 39:1481–1486CrossRefGoogle Scholar
  48. Wilhelm SW, Trick CG (1994) Iron-limited growth of cyanobacteria:siderophore production is a common response. Limnol Oceanogr 39:1979–1984CrossRefGoogle Scholar
  49. Winkelmann G (1991) Handbook of microbial iron chelates. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • J. Magdalena Santana-Casiano
    • 1
  • M. González-Dávila
    • 1
  • A. G. González
    • 1
  • F. J. Millero
    • 2
  1. 1.Departamento de Química, Facultad de Ciencias del MarUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations