Aquatic Geochemistry

, Volume 14, Issue 2, pp 99–116 | Cite as

Determination of Free Nickel Ion Concentrations Using the Ion Exchange Technique: Application to Aqueous Mining and Municipal Effluents

  • Yamini Gopalapillai
  • Ismail I. Fasfous
  • John D. Murimboh
  • Tahir Yapici
  • Parthasarathi Chakraborty
  • Chuni L. Chakrabarti
Original Paper


Free metal ion concentration is generally considered a useful indicator of a metal’s bioavailability and ecotoxicity to aquatic biota. This article reports the speciation of nickel in mining and municipal effluents from Sudbury (Ontario, Canada), and also in model solutions containing a fully characterized laurentian fulvic acid (LFA) at environmentally relevant concentrations. A column ion exchange technique (IET) using a cation exchange resin (Dowex 50W-X8) was applied to determine free nickel ion concentrations. In model solutions, reasonable correlation was found between the predictions of an equilibrium-based computer speciation code, Windermere Humic Aqueous Model (WHAM) VI, and the results obtained by IET at low nickel-to-fulvic acid ratios. However at higher mole ratios, the WHAM VI predicted higher free nickel ion concentrations than IET. Only three out of six effluent samples showed reasonable agreement between the IET and the WHAM VI results, indicating the need for further development of IET for application to effluent waters.


Ion exchange technique Nickel speciation Free metal ion WHAM VI Mine effluent Dissolved organic carbon Bioavailability 


  1. Apte SC, Batley GE (1995) Trace metal speciation of labile chemical species in natural waters and sediments: non-electrochemical approaches. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, UKGoogle Scholar
  2. Apte SC, Batley GE, Bowles KC, Brown PL, Creighton N, Hales LT, Hyne RV, Julli M, Markich SJ, Pablo F, Rogers NJ, Stauber JL, Wilde K (2005) A comparison of copper speciation measurements with the toxic response of three sensitive freshwater organisms. Environ Chem 2:320–330CrossRefGoogle Scholar
  3. Batley GE, Apte SC, Stauber JL (2004) Speciation and bioavailability of trace metals in water: progress since 1982. Aust J Chem 57(10):903–919CrossRefGoogle Scholar
  4. Buffle J (1988) Complexation reactions in aquatic systems, an analytical approach. Ellis Horwood, ChichesterGoogle Scholar
  5. Buffle J, Altmann RS, Filella M, Tessier A (1990) Complexation by natural heterogeneous compounds: site occupation distribution functions, a normalized description of metal complexation. Geochim Cosmochim Acta 54:1535–1553CrossRefGoogle Scholar
  6. Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, UK, pp 45–102Google Scholar
  7. Cantwell FC, Nielson JS, Hrudey SE (1982) Free nickel ion concentration in sewage by an ion exchange column-equilibration method. Anal Chem 54:1498–1503CrossRefGoogle Scholar
  8. Cao J, Xue H, Sigg L (2006) Effects of pH and Ca competition on complexation of cadmium by fulvic acids and by natural organic ligands from a river and a lake. Aquat Geochem 12:375–387CrossRefGoogle Scholar
  9. Chakrabarti CL, Lu Y, Cheng J, Grégoire DC, Back MH, Schroeder WH (1993) Studies on metal speciation in the natural environment. Anal Chim Acta 267:47–54CrossRefGoogle Scholar
  10. Chakraborty P, Gopalapillai Y, Murimboh J, Fasfous II, Chakrabarti CL (2006) Kinetic speciation of nickel in mining and municipal effluents. Anal Bioanal Chem 386:1803–1813CrossRefGoogle Scholar
  11. de Bolster MWG (1997) Glossary of terms used in bioinorganic chemistry (IUPAC recommendations 1997). Pure Appl Chem 69:1251–1303CrossRefGoogle Scholar
  12. Doig LE, Liber K (2007) Nickel speciation in the presence of different sources and fractions of dissolved organic matter. Ecotox Environ Safe 66(2):169–177CrossRefGoogle Scholar
  13. Fasfous II, Yapici T, Murimboh J, Hassan NM, Chakrabarti CL, Back MH, Lean DRS, Grégoire DC (2004) Kinetics of trace metal competition in the freshwater environment: Some fundamental characteristics. Environ Sci Technol 38:4979–4986CrossRefGoogle Scholar
  14. Filella M, Buffle J, Van Leeuwen HP (1990) Effect of physico-chemical heterogeneity of natural complexants: part I. Voltammetry of labile metal-fulvic complexes. Anal Chim Acta 232(1):209–223CrossRefGoogle Scholar
  15. Fortin C, Campbell PGC (1998) An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): application to complex aqueous media. Int J Environ Anal Chem 72:173–194CrossRefGoogle Scholar
  16. Fortin C, Caron F (2000) Complexing capacity of low-level radioactive waste leachates for 60Co and 109Cd using an ion-exchange technique. Anal Chim Acta 410(1–2):107–117CrossRefGoogle Scholar
  17. Ge Y, Sauve S, Hendershot WH (2005) Equilibrium speciation of cadmium, copper, and lead in soil solutions. Commun Soil Sci Plant Anal 36:1537–1556CrossRefGoogle Scholar
  18. Guthrie JW, Hassan NM, Salam MSA, Fasfous II, Murimboh CA, Murimboh J, Chakrabarti CL, Gregoire DC (2005) Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Anal Chim Acta 528:205–218CrossRefGoogle Scholar
  19. Guthrie JW, Mandal R, Salam MSA, Hassan NM, Murimboh J, Chakrabarti CL, Back MH, Gregoire DC (2003) Kinetic studies of nickel speciation in model solutions of a well-characterized humic acid using the competing ligand exchange method. Anal Chim Acta 480(1):157–169CrossRefGoogle Scholar
  20. Langford CH, Cook RL (1995) Kinetics versus equilibrium studies for the speciation of metal complexes with ligands from soil and water. Analyst 120:591–596CrossRefGoogle Scholar
  21. Langford CH, Gamble DS, Underdown AW, Lee S (1983) Aquatic and terrestrial humic materials. Ann Arbor Science, pp 222–224Google Scholar
  22. Mandal R, Hassan NM, Murimboh J, Chakrabarti CL, Back MH, Rahayu U, Lean DRS (2002) Chemical speciation and toxicity of nickel species in natural waters from the Sudbury area (Canada). Environ Sci Technol 36:1477–1484CrossRefGoogle Scholar
  23. Morel FMM (1983) Principles of Aquatic Chemistry. Wiley-Interscience, New YorkGoogle Scholar
  24. Muyssen BTA, Brix KV, DeForest DK, Janssen CR (2004) Nickel essentiality and homeostasis in aquatic organisms. Environ Rev 12:113–131CrossRefGoogle Scholar
  25. National Institute of Standards and Technology (2004) (NIST Standard Reference Database 46) Critical stability constants of metal complexes database, version 8.0. Department of Commerce, Gaithersburg, MarylandGoogle Scholar
  26. Ren H, Kratochvil B (1995) Determination of free calcium land magnesium concentrations in urine amples by an ion exchange-inductively couple plasma atomic emission spectroscopy method. Int J Environ Anal Chem 60:303–312CrossRefGoogle Scholar
  27. Sigg L, Black F, Buffle J, Cao J, Cleven R, Davison W, Galceran J, Gunkel P, Kalis E, Kistler D, Martin M, Noël S, Nur Y, Odzak N, Puy J, Riemsdijk WV, Temminghoff E, Tercier-Waeber M-L, Toepperwien S, Town RM, Unsworth ER, Warnken KW, Weng L, Xue H, Zhang H (2006) Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ Sci Technol 40:1934–1941CrossRefGoogle Scholar
  28. Sigma-Aldrich Corporation. DOWEX ion exchange resins: using ion exchange resin selectivity coefficients [Online]. Available: Cited 16 July 2007
  29. Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. John Wiley & Sons, New York, pp 161–588Google Scholar
  30. Sweileh JA, Lucyk D, Kratochvil B, Cantwell FF (1987) Specificity of the ion exchange/atomic absorption method for free copper(II) species determination in natural waters. Anal Chem 59:586–592CrossRefGoogle Scholar
  31. Temminghoff EJM, Plette ACC, Van Eck R, Riemsdijk WH (2000) Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique. Anal Chim Acta 417:149–157CrossRefGoogle Scholar
  32. Templeton D, Ariese F, Cornelis R, Danielson LG, Muntau H, Van Leeuwen H, Lobinski R (2000) Guidelines for terms related to chemical speciation and fractionation of elements: definitions, structural aspects and methodological approaches (IUPAC Recommendations 2000). Pure Appl Chem 72:1453–1471CrossRefGoogle Scholar
  33. Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–48CrossRefGoogle Scholar
  34. Tipping E (2002) Cation binding by humic substances. Cambridge University Press, Cambridge, UKGoogle Scholar
  35. Underdown AW, Langford CH , Gamble DS (1985) Light scattering studies of the relationship between cation binding and aggregation of a fulvic acid. Environ Sci Technol 19:132–136CrossRefGoogle Scholar
  36. Unsworth ER, Warnken KW, Zhang H, Davison W, Black F, Buffle J, Cao J, Cleven R, Galceran J, Gunkel P, Kalis E, Kistler D, van Leeuwen HP, Martin M, Noël S, Nur Y, Odzak N, Puy J, Riemsdijk WV, Sigg L, Temminghoff E, Tercier-Waeber M-L, Toepperwien S, Town RM, Weng L, Xue H (2006) Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ Sci Technol 40:1942–1949CrossRefGoogle Scholar
  37. Unsworth ER, Zhang H, Davison W (2005) Use of diffusive gradients in thin films to measure cadmium speciation in solutions with synthetic and natural ligands: comparison with model predictions. Environ Sci Technol 39:624–630CrossRefGoogle Scholar
  38. [USEPA] U.S. Environmental Protection Agency (2007) Aquatic Life Ambient Freshwater Quality Criteria, Copper, 2007 Revision. US EPA Office of Water, Washington, DCGoogle Scholar
  39. Vigneault B, Campbell PGC (2005) Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances. J Phycol 41:55–61CrossRefGoogle Scholar
  40. Wang Z (1989) Stoichiometric interactions of atrazine and hydroxyatrazine with chemically-characterized laurentian soil and its key components. Ph.D. Thesis, Concordia University, Montreal, CanadaGoogle Scholar
  41. Worms IAM, Parthasarathy N, Wilkinson KJ (2007) Ni uptake by a green alga. 1. Validation of equilibrium models for complexation effects. Environ Sci Technol 41:4258–4263CrossRefGoogle Scholar
  42. Xue HB, Jansen S, Prasch A, Sigg L (2001) Nickel speciation and complexation kinetics in freshwater by ligand exchange and DPSCV. Environ Sci Technol 35:539–546CrossRefGoogle Scholar
  43. Zhang H, Davison W (2000) Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films. Anal Chem 72:4447–4457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Yamini Gopalapillai
    • 1
  • Ismail I. Fasfous
    • 2
  • John D. Murimboh
    • 3
  • Tahir Yapici
    • 1
  • Parthasarathi Chakraborty
    • 1
  • Chuni L. Chakrabarti
    • 1
  1. 1.Ottawa-Carleton Chemistry Institute, Department of ChemistryCarleton UniversityOttawaCanada
  2. 2.Department of ChemistryThe Hashemite UniversityZarqaJordan
  3. 3.Department of ChemistryAcadia UniversityWolfvilleCanada

Personalised recommendations