Advertisement

Aquatic Geochemistry

, Volume 14, Issue 1, pp 73–98 | Cite as

Global Radiation and Onset of Stratification as Forcing Factors of Seasonal Carbonate and Organic Matter Flux Dynamics in a Hypertrophic Hardwater Lake (Sacrower See, Northeastern Germany)

  • Philipp Bluszcz
  • Emiliya Kirilova
  • André F. Lotter
  • Christian Ohlendorf
  • Bernd Zolitschka
Original Paper

Abstract

A 2-year (October 2003–October 2005) high-resolution sediment trap study was conducted in Sacrower See, a dimictic hardwater lake in northeastern Germany. Geochemical and diatom data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to quantify the impact of single parameters on biochemical calcite precipitation and organic matter production. Our goals were to disentangle how carbonaceous varves and their sublaminae form during the annual cycle to better understand the palaeorecords and to detect influences of dissolution, resuspension as well as of global radiation and stratification on lake internal particle formation. Total particle fluxes in both investigated years were highest during spring and summer. Sedimentation was dominated by autochthonous organic matter and biochemically precipitated calcite. Main calcite precipitation occurred between April and July and was preceded and followed by smaller flux peaks caused by resuspension during winter and blooms of the calcified green algae Phacotus lenticularis during summer. In some of the trap intervals during summer up to 100% of the precipitated calcite was dissolved in the hypolimnion. High primary production due to stable insolation conditions in epilimnic waters began with stratification of the water column. Start and development of stratification is closely related to air and water surface temperatures. It is assumed that global radiation influences the onset and stability of water column stratification and thereby determining the intensity of primary production and consequently of timing and amount of calcite precipitation which is triggered by phytoplanktonic CO2 consumption. Sediment fluxes of organic matter and calcite are also related to the winter NAO-Index. Therefore these fluxes will be used as a proxy for ongoing reconstruction of Holocene climate conditions.

Keywords

Lake sediments Sediment traps Sediment flux Water column stratification Global radiation Calcite saturation Phosphate Phacotus Diatoms 

Notes

Acknowledgments

We would like to thank Dirk Enters, Torsten Haberzettl, and Britta Lüder for help during the fieldwork and for helpful discussions. Sabine Stahl and Benjamin Bünning are acknowledged for their assistance with geochemical analyses. The Landesumweltamt Brandenburg is acknowledged for providing electric conductivity data. We are much obliged to Herbert Ebel, Uwe Brämick, Frank Rümmler, and Steffen Zienert from the Institut für Binnenfischerei Potsdam for their support during fieldwork and for providing their local infrastructure. Hermann Oesterle and Friedrich-Wilhelm Gerstengarbe are acknowledged for providing the data of the meteorological station at Potsdam-Telegrafenberg. The manuscript benefited greatly from the comments by Holger Cremer and Oliver Heiri and from the suggestions and comments of an anonymous reviewer. This study was supported from grant DFG Zo 102/4-1 by the German Science Foundation and the Central Research Supply (Zentrale Forschungsförderung) of the University of Bremen.

References

  1. Anderson NJ (1990) The biostratigraphy and taxonomy of small Stephanodiscus and Cyclostephanos species (Bacilllariophyceae) in a eutrophic lake, and their ecological implications. Br Phycol J 25:217–235CrossRefGoogle Scholar
  2. Antonescu CS (1931) Über das Vorkommen eines ausgeprägten metalimnischen Sauerstoffminimums in einem norddeutschen See (Sakrower See bei Potsdam). Arch Hydrobiol 22:580–596Google Scholar
  3. Battarbee RW (1973) A new method for estimation of absolute microfossil numbers, with reference especially to diatoms. Limnol Oceanogr 18:647–653Google Scholar
  4. Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroh M, Wild A, Weigert A, Jäger CG, Striebel M (2007) Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150:643–654CrossRefGoogle Scholar
  5. Bloesch J, Uehlinger U (1986) Horizontal sedimentation differences in a eutrophic swiss lake. Limnol Oceanogr 31:1094–1109Google Scholar
  6. Bradbury JP (1988) A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. J Paleolimnol 1:115–131CrossRefGoogle Scholar
  7. Cremer H, Wagner M, Melles M, Hubberten H (2001) The postglacial environmental development of Raffles Sø, East Greenland: inferences from a 10 000 year diatom record. J Paleolimnol 26:67–87CrossRefGoogle Scholar
  8. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  9. Dean WE (1999) The carbon cycle and biochemical dynamics in lake sediments. J Paleolimnol 21:375–393CrossRefGoogle Scholar
  10. Dittrich M, Kurz P, Wehrli B (2004) The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiol J 21:45–53CrossRefGoogle Scholar
  11. Dittrich M, Müller B, Mavrocordatos D, Wehrli B (2003) Induced calcite precipitation by Cyanobacterium Synechocuccus. Acta Hydrochim Hydrobiol 31(2):162–169CrossRefGoogle Scholar
  12. Dokulil MT, Teubner K (2003) Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes. Do they occur? Hydrobiologia 502:65–72CrossRefGoogle Scholar
  13. Douglas RW, Rippey B, Gibson CE (2002) Interpreting sediment trap data in relation to the dominant sediment redistribution process in a lake. Arch Hydrobiol 155(4):529–539Google Scholar
  14. Eicher U, Siegenthaler U (1976) Palynological and oxygen isotope investigations on Late-Glacial sediment cores from Swiss lakes. Boreas 5:109–117CrossRefGoogle Scholar
  15. Haberzettl T, Fey M, Lücke A, Maidana N, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Wille M, Zolitschka B (2005) Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). J Paleolimnol 33:283–302CrossRefGoogle Scholar
  16. Håkansson H (2002) A compilation and evolution of species in the genera Stephanodiscus, Cyclostephanos and Cyclotella with a new genus in the family Stephanodiscaceae. Diatom Res 17:1–139Google Scholar
  17. Håkansson H, Stoermer EF (1984) Observations on the type material of Stephanodiscus Hantzschii Grunow in Cleve & Grunow. Nova Hedwigia 39:477–495Google Scholar
  18. Hausmann S, Kienast F (2006) A diatom-inference model for nutrients screened to reduce the influence of background variables: application to varved sediments of Greifensee and evaluation with measured data. Palaeogeogr Palaeoclimatol Palaeoecol 233:96–112CrossRefGoogle Scholar
  19. Hickel B, Håkansson H (1993) Stephanodiscus alpinus in Plusssee, Germany. Ecology, morphology and taxonomy in combination with initial cells. Diatom Res 8(1):89–98Google Scholar
  20. Hodell DA, Schelske CL, Fahnenstiel GL, Robbins LL (1998) Biologically induced calcite and its isotopic composition in Lake Ontario. Limnol Oceanogr 43(2):187–199Google Scholar
  21. Itkonen A, Salonen VP (1994) The response of sedimentation in three varved lacustrine sequences to air temperature, precipitation and human impact. J Paleolimnol 11:323–332CrossRefGoogle Scholar
  22. Jäger P, Röhrs J (1990) Phosphorfällung über Calciumcarbonat im eutrophen Wallersee. Int Revue ges Hydrobiol 75(2):163–173CrossRefGoogle Scholar
  23. Kienel U, Schwab MJ, Schettler G (2005) Distinguishing climatic from direct anthropogenic influences during the past 400 years in varved sediments from Lake Holzmaar (Eifel, Germany). J Paleolimnol 33:327–347CrossRefGoogle Scholar
  24. Koschel RH (1990) Pelagic calcite precipitation and trophic state of hardwater lakes. Arch Hydrobiol Beih 33:713–722Google Scholar
  25. Koschel R, Benndorf J, Proft G, Recknagel F (1983) Calcite precipitation as a natural control mechanism of eutrophication. Arch Hydrobiol 98(3):380–408Google Scholar
  26. Koschel R, Proft G, Raidt H (1987a) Autochtone Kalkfällung in Hartwasserseen der Mecklenburger Seenplatte. Limnologica 18(2):317–338Google Scholar
  27. Koschel R, Proft G, Raidt H (1987b) Phacotus-Massenentwicklungen – eine Quelle des autochtonen Kalkeintrages in Seen. Limnologica 18(2):457–459Google Scholar
  28. Koschel RH, Raidt H (1988) Morphologische Merkmale der Phacotus-Hüllen in Hartwasserseen der Mecklenburgischen Seenplatte. Limnologica 19:13–25Google Scholar
  29. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae Part 4: Achnanthaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol 2/4. Gustav Fischer Verlag, Heidelberg, p 468Google Scholar
  30. Krammer K, Lange-Bertalot H (1999a). Bacillariophyceae Part 1: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol 2/1. Gustav Fischer Verlag, Heidelberg, p 876Google Scholar
  31. Krammer K, Lange-Bertalot H (1999b) Bacillariophyceae Part 2: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol 2/2. Gustav Fischer Verlag, Heidelberg, p 610Google Scholar
  32. Krammer K, Lange-Bertalot H (2000) Bacillariophyceae Part 3: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Heidelberg, p 598Google Scholar
  33. Krienitz L, Koschel RH, Giering B, Casper SJ, Hepperle D (1993) Phenomenology of organismic calcite precipitation by Phacotus in hardwater lakes and ponds of northeastern Germany. Verh Internat Verein Limnol 25:170–174Google Scholar
  34. Leemann A, Niessen F (1994) Varve formation and the climatic record in an Alpine proglacial lake. The Holocene 4(1):1–8CrossRefGoogle Scholar
  35. Lister GS (1988) A 15000-year isotopic record from Lake Zürich of deglaciation and climate change in Switzerland. Quaternary Res 29:129–141CrossRefGoogle Scholar
  36. Livingstone DM, Dokulil MT (2001) Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnol Oceanogr 46(5):1220–1227Google Scholar
  37. Livingstone DA, Lotter AF (1998) The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. J Paleolimnol 19:181–198CrossRefGoogle Scholar
  38. Lotter AF (2001) The effect of eutrophication on diatom diversity: examples from six Swiss lakes. In: Jahn R, Kociolek JP, Witkowski A, Compère P, Ruggell ARG (eds) Studies on diatoms. Ganther Verlag K.G., pp 417–432Google Scholar
  39. Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141CrossRefGoogle Scholar
  40. Lotter AF, Birks HJB (1997) The separation of the influence of nutrients and climate on the varve time-series of Baldeggersee, Switzerland. Aquat Sci 59(4):362–375CrossRefGoogle Scholar
  41. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1998) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19(4):443–463CrossRefGoogle Scholar
  42. Lotter AF, Sturm M, Teranes JL, Wehrli B (1997) Varve formation since 1885 and high-resolution varve analysis in hypertrophic Baldeggersee (Switzerland). Aquat Sci 59(4):304–325CrossRefGoogle Scholar
  43. Lüder B, Kirchner G, Lücke A, Zolitschka B (2006) Palaeoenvironmental reconstructions based on geochemical parameters from annually laminated sediments of Sacrower See (northeastern Germany) since the 17th century. J Paleolimnol 35:897–912CrossRefGoogle Scholar
  44. Marchetto A, Musazzi S (2001) Comparison between sedimentary and living diatoms in Lago Maggiore (N. Italy): implications of using transfer functions. J Limnol 60(1):19–26Google Scholar
  45. Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N (2003) Variations of the climatological growing season (1951–2000) in Germany compared with other countries. Int J Climatol 23(7):793–812CrossRefGoogle Scholar
  46. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Chem 34:261–289Google Scholar
  47. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 2: physical and geochemical methods. Kluwer, Dordrecht, Boston, London, pp 239–269Google Scholar
  48. Müller G, Oti M (1981) The occurence of calcified planktonic green algae in freshwater carbonates. Sedimentology 28:897–902CrossRefGoogle Scholar
  49. Müller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res 40(3):425–444CrossRefGoogle Scholar
  50. Niessen F, Sturm M (1987) Die Sedimente des Baldeggersees (Schweiz) – Ablagerungsraum und Eutrophierungsentwicklung während der letzten 100 Jahre. Arch Hydrobiol 108(3):365–383Google Scholar
  51. Ohlendorf C, Niessen F, Weissert H (1997) Glacial varve thickness and 127 years of instrumental climate data: a comparison. Clim Change 36:391–411CrossRefGoogle Scholar
  52. Ohlendorf C, Sturm M (2001) Precipitation and dissolution of calcite in a Swiss high alpine lake. Arct Antarct Alp Res 33(4):410–417CrossRefGoogle Scholar
  53. Raidt H, Koschel RH (1988) Morphology of calcite crystals in hardwater lakes. Limnologica 19(2):3–12Google Scholar
  54. Raidt H, Koschel RH (1993) Variable morphology of calcite crystals in hardwater lakes. Limnologica 23(1):85–89Google Scholar
  55. Ramisch F, Dittrich M, Mattenberger C, Wehrli B, Wüest A (1999) Calcite dissolution in two deep eutrophic lakes. Geochim Cosmochim Acta 63(19/20):3349–3356CrossRefGoogle Scholar
  56. Rodrigo MA, Vicente E, Miracle MR (1993) Short-term calcite precipitation in the karstic meromictic Lake La Cruz (Cuenca, Spain). Verh Internat Verein Limnol 25:711–719Google Scholar
  57. Rümmler F, Schiewe S, Ebel H (1997) Arbeitsbericht 1997 zur wissenschaftlichen Begleitung der Sanierung des Sacrower Sees mittels Tiefenwasserbelüftung. Groß Glienicke, Institut für Binnenfischerei e. V. Potsdam-SacrowGoogle Scholar
  58. Rümmler F, Wellner E (1992) Arbeitsbericht 1992 zur wissenschaftlichen Begleitung der Sanierung des Sacrower Sees durch den Betrieb einer Tiefenwasserbelüftungsanlage Part 1. Potsdam, Institut für Binnenfischerei e.V. Potsdam – SacrowGoogle Scholar
  59. Schickendantz G (1910/11) Temperaturen und Sauerstoff im Sacrower See bei Potsdam. Internationale Revue der Gesellschaft für Hydrobiologie und Hydrographie, Leipzig pp 84–92Google Scholar
  60. Schlegel I, Koschel R, Krienitz L (1998) On the occurence of Phacotus lenticularis (Chlorophyta) in lakes of different trophic state. Hydrobiologica 369/370:353–361CrossRefGoogle Scholar
  61. Schlegel I, Krienitz L, Hepperle D (2000) Variability of calcification of Phacotus lenticularis (Chlorophyta, Chlamydomonadales) in nature and culture. Phycologia 39(4):318–322Google Scholar
  62. Schönfelder I (1997) Eine Phosphor-Diatomeen-Relation für alkalische Seen und Flüsse Brandenburgs und ihre Anwendung für die paläolimnologische Analyse von Auensedimenten der unteren Havel. Diss Bot 283:1–148Google Scholar
  63. Stabel HH (1986) Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae. Limnol Oceanogr 31(5):1081–1093CrossRefGoogle Scholar
  64. Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50CrossRefGoogle Scholar
  65. Straile D, Geller W (1998) The response of Daphnia to changes in trophic status and weather patterns: a case study from Lake Constance. ICES J Mar Sci 55:775–782CrossRefGoogle Scholar
  66. Straile D, Livingstone DM, Weyhenmeyer GA, Glen George D (2003) The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In: Hurrell J, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic oscillation: climatic significance and environmental impact, Geophysical Monograph 134:263–279Google Scholar
  67. Sturm M, Matter A (1978) Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. Special Publication of the International Association of Sedimentologists 2:147–168Google Scholar
  68. Sturm M, Zeh U, Sigg L, Stabel HH (1982) Schwebstoffuntersuchungen im Bodensee mit Intervall-Sedimentationsfallen. Eclogae Geol Helv 75(3):579–588Google Scholar
  69. Teranes JL, McKenzie JA (2001) Lacustrine oxygen isotope record of 20th-century climate change in central Europe: evaluation of climatic controls on oxygen isotopes in precipitation. J Paleolimnol 26:131–146CrossRefGoogle Scholar
  70. Teranes JL, McKenzie JA, Bernasconi SM, Lotter AF, Sturm M (1999) A study of oxygen isotopic fractionation during bio-induced calcite precipitation in eutrophic Baldeggersee, Switzerland. Geochim Cosmochim Acta 63(13/14):1981–1989CrossRefGoogle Scholar
  71. Thompson JB, Schultze-Lam S, Beveridge TJ, Des Marais DJ (1997) Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnol Oceanogr 42(1):133–141CrossRefGoogle Scholar
  72. Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133CrossRefGoogle Scholar
  73. von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Johnsen SJ (1999) A mid-European decadal isotope-climate record from 15,500 to 5000 years BP. Science 284:1654–1657CrossRefGoogle Scholar
  74. Wetzel RG (2001) Limnology. Academic Press, San DiegoGoogle Scholar
  75. Zolitschka B (1996) High resolution lacustrine sediments and their potential for palaeoclimatic reconstruction. NATO ASI Ser I 41:454–478Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Philipp Bluszcz
    • 1
  • Emiliya Kirilova
    • 2
  • André F. Lotter
    • 2
  • Christian Ohlendorf
    • 1
  • Bernd Zolitschka
    • 1
  1. 1.Geopolar, Geomorphology and Polar Research, Institute of GeographyUniversity of BremenBremenGermany
  2. 2.Palaeocology, Institute of Environmental Biology, Faculty of ScienceLaboratory of Palynology and Palaeobotany, Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations