Aquatic Geochemistry

, Volume 13, Issue 1, pp 1–18 | Cite as

Carbon dioxide dynamics in rivers and coastal waters of the “big island” of Hawaii, USA, during baseline and heavy rain conditions

  • François S. Paquay
  • Fred T. Mackenzie
  • Alberto V. Borges
Original Paper


The distributions of the partial pressure of carbon dioxide (pCO2) and total alkalinity (TA) were examined for a 6-month period in the Wailuku and Wailoa rivers and coastal waters of Hilo Bay on the west coast of the Island of Hawaii, USA. Main results for the largest and turbulent Wailuku River show in the watershed an oversaturation in CO2 with respect to atmospheric equilibrium and a CO2 undersaturation in the estuary. In the Wailoa river-estuary system, extremely high pCO2 values ranging from 1500 to 10500 ppm were measured with significant shifts in pCO2 from drought to flood period. In the two rivers, water residence time, groundwater inputs and occasional flood events are the predominant drivers of the spatial and temporal patterns in the distribution of pCO2. In Hilo Bay, CO2 oversaturation dominates and the bay was a source of CO2 to the atmosphere during the study period. TA is conservative along the salinity gradient, indicating calcification in the bay is not a significant source of CO2 to the atmosphere.


Carbon dioxide Total alkalinity Big Island of Hawaii Tropical aquatic systems Rivers Estuaries Coastal waters 



We thank the Program in Marine Science at the University of Hawaii at Hilo for their support of FSP while he was student and for providing office space to FTM while he was a Visiting Professor there. We gratefully acknowledge the National Science Foundation (EAR02-23509), the Hawaii Sea Grant Program and B. L. Heintz, and V. J. Jacinto for their financial support for this research. AVB is a research associate at the Fonds National de la Recherche Scientifique. This is SOEST contribution no. XXX. MARE contribution no. XXX.


  1. Abril G, Etcheber H, Borges AV, Frankignoulle M (2000) Excess atmospheric carbon dioxide transported into the Scheldt estuary. Compte Rendus de l’Académie des Sciences de Paris, Sciences de la Terre et des planètes 330:761–768Google Scholar
  2. Abril G, Borges AV (2004) Carbon dioxide and methane emissions from estuaries: Berlin, Springer. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gases emissions from natural environments and hydroelectric reservoirs: Fluxes and processes. Springer, Berlin, Heidelberg, New York, pp 187–207Google Scholar
  3. Atekwana EA, Krishnamurthy RV (1998) Seasonal variations of dissolved inorganic carbon and C of surface waters: application of a modified gas evolution technique. J Hydrol 205:265–278CrossRefGoogle Scholar
  4. Barth JAC, Veizer J (1999) Carbon cycle in St. Lawrence aquatic ecosystems at Cornwall Ontario, Canada: seasonal and spatial variations. Chem Geol 159:107–128CrossRefGoogle Scholar
  5. Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2, and air–sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46:833–846Google Scholar
  6. Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean. Estuaries 28:1–25CrossRefGoogle Scholar
  7. Borges A, Djenedi S, Lacroix G, Theate J-M, Delille B, Frankignoulle M (2003) Atmospheric CO2 flux from mangrove surrounding waters. Geophys Res Lett 30(11):1558, doi:10.1029/2003GL017143Google Scholar
  8. Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett 32(14):L14601, doi:10.1029/2005GL023053Google Scholar
  9. Bouillon S, Frankignoulle M, Dehairs F, Velimorov B, Eiler A, Abril G, Etchebe H, Borges AV (2003) Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: the local impact of extensive mangrove forests. Global Biogeochem Cycles 17(4):1114, doi:10.1029/2002GB002026Google Scholar
  10. Brady PV, Dorn RI, Brazel AJ, Clarck J, Moore RB, Glidewell T (1999) Direct measurement of the combined effects of lichen, rainfall, and temperature on silicate weathering. Geochim Cosmochim Acta 63:3293–3300CrossRefGoogle Scholar
  11. Cai WJ, Wang Y (1998) The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha rivers, Georgia. Limnol Oceanogr 43:657–668CrossRefGoogle Scholar
  12. Cai W-J (2003) Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophys Res Lett 30(2):1032, doi:10.1029/2002GL016312CrossRefGoogle Scholar
  13. Cai WJ, Wang AZ, Wang Y (2003a) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Res 24:1301–1319CrossRefGoogle Scholar
  14. Cai WJ, Wang Y, Krest J, Moore WS (2003b) The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochem Cosmochim Acta 67:631–637CrossRefGoogle Scholar
  15. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570CrossRefGoogle Scholar
  16. Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110CrossRefGoogle Scholar
  17. Dessert C, Dupré B, Gaillardet J, Francois LM, Allègre CJ (2003) Basalt weathering and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273CrossRefGoogle Scholar
  18. Fagan K, Mackenzie FT (2006) Air–sea CO2 exchange in a sub-tropical estuarine/coral reefs systems, Kaneohe Bay, Hawaii, Oahu, USA. Mar Chem (in press)Google Scholar
  19. Frankignoulle M, Abril G, Borges AV, Bourge I, Canon C, Delille B, Libert E, Théate J-M (1998) Carbon dioxide emission from European estuaries. Science 282:434–436CrossRefGoogle Scholar
  20. Frankignoulle M, Gattuso J-P, Biondo R, Bourge I, Copin-Montégut G, Pichon M (1996a) Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air–sea CO2 exchanges. Mar Ecol Prog Ser 145:123–132Google Scholar
  21. Frankignoulle M, Bourge I, Wollast R (1996b) Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt). Limnol Oceanogr 41:365–369CrossRefGoogle Scholar
  22. Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks New York. W. W. and Company, Norton, 397 ppGoogle Scholar
  23. Gattuso J-P, Pichon M, Delesalle B, Frankignoulle F (1993) Community metabolism and air–sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Mar Ecol Prog Ser 96:2567–2579Google Scholar
  24. Gran G (1952) Determination of the equivalence point in potentiometric titrations. Part II. Analysis 77:661–671Google Scholar
  25. Helie J-F, Hillaire-Marcel C, Rondeau B (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River-isotopic and chemical constraint. Chem Geol 186:117–138CrossRefGoogle Scholar
  26. Herman PMJ, Heip CHR (1999) Biogeochemistry of the MAximum TURbidity Zone of Estuaries MATURE. J Mar Syst 22:89–104CrossRefGoogle Scholar
  27. Ito RG, Schneider B, Thomas H (2005) Seasonal variations of fCO2 in seawater of the southwestern subtropical Atlantic and adjacent continental shelf. J Mar Syst 56:227–242CrossRefGoogle Scholar
  28. Jones JJB, Mulholland PJ (1998) Carbon dioxide variation in a hardwood forest stream: An integrative measure of whole catchment soil respiration. Ecosystems 1:183–196CrossRefGoogle Scholar
  29. Jones JJB, Stanley EH, Mulholland PJ (2003) Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophys Res Lett 30(10):1495, doi:10.1029/2003GL017056CrossRefGoogle Scholar
  30. Kempe S, Pettine M, Cauwet G (1991) Biogeochemistry of Europe rivers. In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of Major World Rivers, SCOPE 42. John Wiley & Sons, New York N.K., pp 169–211Google Scholar
  31. Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets. Science 251:298–301CrossRefGoogle Scholar
  32. Li Y-H (1988) Denudations rates of the Hawaiian islands by rivers and groundwaters. Pacific Sci 42:253–266Google Scholar
  33. Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10:23–42CrossRefGoogle Scholar
  34. Mackenzie FT, Lerman A, Andersson AJ (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeosci Discussions 1:11–32, Scholar
  35. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  36. Meybeck M, Helmer R (1989) The quality of rivers: from pristine stage to global pollution, Palaeogeography, Palaeoclimatology. Palaeoecology 75:283–309CrossRefGoogle Scholar
  37. Milliman JD, Farnsworth KL, Albertin CS (1999) Flux and fate of fluvial sediments leaving large islands in the East Indies. J Sea Res 41:97–107CrossRefGoogle Scholar
  38. Mukhopadhyay SK, Biswas H, De TK, Sen S, Jana TK (2002) Seasonal effects on the air–water carbon dioxide exchange in the Hooghly estuary, NE coast of Gulf of Bengal, India. J Environ Monitor 4:549–552CrossRefGoogle Scholar
  39. Raymond PA, Bauer JE, Cole JJ (2000) Atmospheric CO2 evasion dissolved inorganic carbon production, and net heterotrophy in the York estuary. Limnol Oceanogr 45:1707–1717CrossRefGoogle Scholar
  40. Regnier P, Steefel CI (1999) A high resolution estimate of the inorganic nitrogen flux from the Scheldt estuary to the coastal North Sea during a nitrogen-limited algal bloom, spring 1995. Geochem Cosmochim Acta 63:1359–1374CrossRefGoogle Scholar
  41. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers as wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620CrossRefGoogle Scholar
  42. Sabine CL, Feely RA, Gruber N, Key RM, Bullister L, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  43. Sarma VVSS, Kumar MD, Manerikar M (2001) Emission of carbon dioxide from a tropical estuarine system, Goa, India. Geophy Res Lett 28(7):1239–1242, doi:10.1029/2000GL006114CrossRefGoogle Scholar
  44. Sehmi K (1996) Erosion et transfert de matière sur le basin versant de la Garonne, influence de la sécheresse, thèse. Université Louis-Pasteur, Strasbourg, 203 ppGoogle Scholar
  45. Stewart BW, Capo RC, Chadwick OA (2001) Effects of rainfall on weathering rate, cation provenance, and Sr isotope composition of Hawaiian soils. Geochim Cosmochim Acta 5:1087–1099CrossRefGoogle Scholar
  46. Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86CrossRefGoogle Scholar
  47. Ternon JF, Oudot C, Dessier A, Diverres D (2000) A seasonal tropical sink for atmospheric CO2 in the Atlantic ocean: the role of the Amazon River discharge. Mar Chem 68:183–201CrossRefGoogle Scholar
  48. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar
  49. Wollast R (1988) The Scheldt estuary. In: Salomons W, Bayne BL, Duursma EK, Forstner U (eds) Pollution of the North Sea, an assessment. Springer, Berlin, pp 183–193Google Scholar
  50. Yee JJS, Ewart CJ (1986) Biological, morphological, and chemical characteristics of Wailuku River. U.S. Geological Survey Water-Resources Investigations Report, Hawaii, pp 85–4285, 64 pGoogle Scholar
  51. Zhai W, Dai M, Cai W-J, Wang Y, Hong H (2005) The partial pressure of carbon dioxide and air–sea fluxes in the northern South China Sea in spring, summer and autumn. Mar Chem 96:87–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • François S. Paquay
    • 1
  • Fred T. Mackenzie
    • 1
  • Alberto V. Borges
    • 2
  1. 1.Department of Oceanography, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA
  2. 2.Chemical Oceanography Unit, Interfacultary Center for Marine ResearchUniversity of LiègeLiègeBelgium

Personalised recommendations