Aquatic Geochemistry

, Volume 12, Issue 1, pp 1–19 | Cite as

Benthic Oxygen Consumption and Organic Matter Turnover in Organic-poor, Permeable Shelf Sands

  • Antje Rusch
  • Markus Huettel
  • Christian Wild
  • Clare E. Reimers
Article

Abstract

The high permeability of sediments and strong near-bottom currents cause seawater to infiltrate the surface layers of Middle Atlantic Bight shelf deposits. In this study, sandy sediment cores from 11 to 12 m water depth were percolated with filtered seawater on shipboard. Sedimentary oxygen consumption (SOC) increased non-linearly with pore water flow, approaching maximum rates of 120 mmol m−2 d−1 (May 2001) or 75 mmol m−2 d−1(July 2001). The addition of acetate to the inflowing water promptly enhanced the release of dissolved inorganic carbon (DIC) from the cores. DIC production rates were a linear function of acetate concentration, ranging from 100 to 300 mmol m−2 d−1 without substrate addition to 572 mmol m−2 d−1 with 100 mM acetate. The sediments also hydrolyzed a glucose pseudopolymer, and the liberated glucose prompted an increase of SOC. Our results suggest that decomposition rates of organic matter in permeable sands can exceed those of fine-grained, organic-rich deposits, when water currents cause advective interstitial flow, supplying the subsurface microbial community with degradable material and electron acceptors. We conclude that the highly permeable sand beds of the Middle Atlantic Bight are responsive within minutes to hours and efficiently operate as biocatalytical filters.

Keywords

benthic mineralization pore water flow biocatalytical filter oxygen DOM DIC permeable sediment shelf sands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, R.C. 1994Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillationChem. Geol.114331345CrossRefGoogle Scholar
  2. Andersen, F.Ø., Helder, W. 1987Comparison of oxygen microgradients, oxygen flux rates and electron transport system activity in coastal marine sedimentsMar. Ecol. Progr. Ser.37259264Google Scholar
  3. Bacon, M.P., Belastock, R.A., Bothner, M.H. 1994210Pb balance and implications for particle transport on the continental shelf, U.S. Middle Atlantic BightDeep Sea Res. II41511535CrossRefGoogle Scholar
  4. Bélanger, C., Desrosiers, B., Lee, K. 1997Microbial extracellular enzyme activity in marine sediments: Extreme pH to terminate reaction and sample storageAquat. Microb. Ecol.13187196Google Scholar
  5. Berg, P., Røy, H., Janssen, F., Meyer, V., Jørgensen, B.B., Huettel, M., Beer, D. 2003Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation techniqueMar. Ecol. Progr. Ser.2617583Google Scholar
  6. Boetius, A., Lochte, K. 1994Regulation of microbial enzymatic degradation of organic matter in deep-sea sedimentsMar. Ecol. Progr. Ser.104299307CrossRefGoogle Scholar
  7. Böttcher, M.E., Hespenheide, B., Llobet-Brossa, E., Beardsley, C., Larsen, O., Schramm, A., Wieland, A., Böttcher, G., Berninger, U.G., Amann, R. 2000The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: An integrated studyContinen. Shelf Res.2017491769CrossRefGoogle Scholar
  8. Dauwe, B., Middelburg, J.J., Herman, P.M.J. 2001The effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea areaMar. Ecol. Progr. Ser.2151322Google Scholar
  9. Falter, J.L., Sansone, F.J. 2000Hydraulic control of pore water geochemistry within the oxic-suboxic zone of a permeable sedimentLimnol. Oceanogr.45550557CrossRefGoogle Scholar
  10. Forster, S., Huettel, M., Ziebis, W. 1996Impact of boundary layer flow velocity on oxygen utilization in coastal sedimentsMar. Ecol. Progr. Ser.143173185Google Scholar
  11. Hall, P.O.J., Aller, R.C. 1992Rapid, small-volume, flow injection analysis for ΣCO2 and NH4+ in marine and freshwatersLimnol. Oceanogr.3711131119CrossRefGoogle Scholar
  12. Holmer, M. 1996Composition and fate of dissolved organic carbon derived from phytoplankton detritus in coastal marine sedimentsMar. Ecol. Progr. Ser.141217228Google Scholar
  13. Huettel, M., Gust, G. 1992Impact of bioroughness on interfacial solute exchange in permeable sedimentsMar. Ecol. Progr. Ser.89253267Google Scholar
  14. Huettel, M., Rusch, A. 2000Transport and degradation of phytoplankton in permeable sedimentLimnol. Oceanogr.45534549CrossRefGoogle Scholar
  15. Huettel, M., Ziebis, W., Forster, S., Luther, G.W.,III 1998Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sedimentsGeochim. Cosmochim. Acta62613631CrossRefGoogle Scholar
  16. Huettel, M., Ziebis, W., Forster, S. 1996Flow-induced uptake of particulate matter in permeable sedimentsLimnol. Oceanogr.41309322CrossRefGoogle Scholar
  17. Kerkhof, L.J., Voytek, M.A., Sherrell, R.M., Millie, D., Schofield, O. 1999Variability in bacterial community structure during upwelling in the coastal oceanHydrobiologia401139148CrossRefGoogle Scholar
  18. Klimant, I., Meyer, V., Kühl, M. 1995Fiber-optic oxygen microsensors, a new tool in aquatic biologyLimnol. Oceanogr.4011591165CrossRefGoogle Scholar
  19. Kristensen, E., Hansen, K. 1995Decay of plant detritus in organic-poor marine sediment: Production rates and stoichiometry of dissolved C and N compoundsJ. Mar. Res.53675702CrossRefGoogle Scholar
  20. Llobet-Brossa, E., Rosselló-Mora, R., Amann, R. 1998Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridizationAppl. Environ. Microbiol.6426912696Google Scholar
  21. Newell, R.C. 1970Biology of Intertidal AnimalsAmerican ElsevierNew YorkGoogle Scholar
  22. Pilditch, C.A., Emerson, C.W., Grant, J. 1998Effect of scallop shells and sediment grain size on phytoplankton flux to the bedContinent. Shelf Res.1718691885CrossRefGoogle Scholar
  23. Precht, E., Franke, U., Polerecky, L., Huettel, M. 2003Oxygen dynamics in permeable sediments with wave-driven pore water exchangeLimnol. Oceanogr.4816741684CrossRefGoogle Scholar
  24. Reimers C. E., Stecher III H. A., Taghon G. L., Fuller C. M., Huettel M., Rusch A., Ryckelynck N. and Wild C. (2004) In situ measurements of advective solute transport in permeable shelf sands. Continent. Shelf Res. 24:183–201Google Scholar
  25. Revsbech, N.P. 1989An oxygen microsensor with a guard cathodeLimnol. Oceanogr.34474478CrossRefGoogle Scholar
  26. Røy, H., Huettel, M., Jørgensen, B.B. 2002The role of small-scale sediment topography for oxygen flux across the diffusive boundary layerLimnol. Oceanogr.47837847CrossRefGoogle Scholar
  27. Rusch, A., Forster, S., Huettel, M. 2001Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water-sediment interfaceBiogeochemistry55127CrossRefGoogle Scholar
  28. Rusch, A., Huettel, M. 2000Advective particle transport into permeable sediments – evidence from experiments in an intertidal sandflatLimnol. Oceanogr.45525533CrossRefGoogle Scholar
  29. Rusch, A., Huettel, M., Forster, S. 2000Particulate organic matter in permeable marine sands – dynamics in time and depthEstuarine, Coast. Shelf Sci.51399414CrossRefGoogle Scholar
  30. Rusch, A., Huettel, M., Reimers, C.E., Taghon, G.L., Fuller, C.M. 2003Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sandsFEMS Microbiol. Ecol.4489100Google Scholar
  31. Scala, D.J., Kerkhof, L.J. 2000Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysisAppl. Environ. Microbiol.6619801986CrossRefGoogle Scholar
  32. Shum, K.T. 1992Wave-induced advective transport below a rippled water–sediment interfaceJ. Geophys. Res. – Oceans97789808CrossRefGoogle Scholar
  33. Silliman, S.E., Dunlap, R., Fletcher, M., Schneegurt, M.A. 2001Bacterial transport in heterogeneous porous media: Observations from laboratory experimentsWater Res. Res.3726992707CrossRefGoogle Scholar
  34. Skopp, J.M. 2000

    Physical properties of primary particles

    Sumner, M.E. eds. Handbook of Soil Science, Chap 1CRC PressBoca RatonA3A17
    Google Scholar
  35. Styles, R.B. 1998A continental shelf bottom boundary layer model: Development, calibration and applications to sediment transport in the Middle Atlantic BightRutgers UniversityNew Brunswick, NJ261PhD thesisGoogle Scholar
  36. Sun, M.-Y., Aller, R.C., Lee, C., Wakeham, S.G. 2002Effects of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sedimentsGeochim. Cosmochim. Acta6620032012CrossRefGoogle Scholar
  37. Thibodeaux, L.J., Boyle, J.D. 1987Bedform-generated convective transport in bottom sedimentNature325341343CrossRefGoogle Scholar
  38. Thomsen, U., Kristensen, E. 1997Dynamics of ΣCO2 in a surficial sandy marine sediment: The role of chemoautotrophyAquat. Microb. Ecol.12165176Google Scholar
  39. Webb, J.E., Theodor, J. 1968Irrigation of submerged marine sands through wave actionNature220682685Google Scholar
  40. Wilde, S.B., Plante, C.J. 2002Spatial heterogeneity of bacterial assemblages in marine sediments: The influence of deposit feeding by Balanoglossus aurantiacusEstuarine, Coast. Shelf Sci.5597107CrossRefGoogle Scholar
  41. Winkler, L.W. 1888The determination of dissolved oxygen in waterBerichte der Deutschen Chemischen Gesellschaft2128432857Google Scholar
  42. Wollast, R. 1991

    The coastal organic carbon cycle: fluxes, sources, and sinks

    Mantoura, R.F.C.Martin, J.M.Wollast, R. eds. Ocean Margin Processes in Global ChangeJohn Wiley & SonsNew York
    Google Scholar
  43. Ziebis, W., Huettel, M., Forster, S. 1996Impact of biogenic sediment topography on oxygen fluxes in permeable sedimentsMar. Ecol. Progr. Ser.140227237Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Antje Rusch
    • 1
    • 3
  • Markus Huettel
    • 1
    • 4
  • Christian Wild
    • 5
  • Clare E. Reimers
    • 2
  1. 1.Max Planck Institute for Marine MicrobiologyBremenGermany
  2. 2.Hatfield Marine Science CenterOregon State UniversityNewportU.S.A
  3. 3.Department of Geology and GeophysicsUniversity of Hawaii at ManoaHonoluluU.S.A
  4. 4.Department of OceanographyFlorida State UniversityTallahasseeU.S.A
  5. 5.GeoBio-CenterLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations