Advertisement

Aquatic Geochemistry

, Volume 10, Issue 3–4, pp 353–371 | Cite as

The Helium Isotopic Chemistry of Lake Bonney, Taylor Valley, Antarctica: Timing of Late Holocene Climate Change in Antarctica

  • Robert J. Poreda
  • Andrew G. Hunt
  • W. Berry LyonsEmail author
  • Kathleen A. Welch
Article

Abstract

To better understand the long-term climate history of Antarctica, we studied Lake Bonney in Taylor Valley, Southern Victoria Land (78°S). Helium isotope ratios and He, Ne, Ar and N2 concentration data, obtained from hydrocasts in the East (ELB) and West (WLB) Lobes of Lake Bonney, provided important constraints on the lake’s Holocene evolution. Based on very low concentrations of Ar and N2 in the ELB bottom waters, ELB was free of ice until 200 ± 50 years ago. After which, low salinity water flowing over the sill from WLB to ELB, covered ELB and formed a perennial ice cover, inhibiting the exchange of gases with the atmosphere. In contrast to the ELB, the WLB retained an ice cover through the Holocene. The brine in the WLB bottom waters has meteoric N2 and Ar gas concentrations indicating that it has not been significantly modified by atmospheric exchange or ice formation. The helium concentrations in the deep water of WLB are the highest measured in non-thermal surface water. By fitting a diffusional loss to the 3He/4He, helium, and Cl profiles, we calculate a time of ∼3000 years for the initiation of flow over the sill separating the East and West Lobes. To supply this flux of helium to the lake, a helium-rich sediment beneath the lake must be providing the helium by diffusion. If at any time during the last million years the ice cover left WLB, there would be insufficient helium available to provide the current flux to WLB. The variations in water levels in Lake Bonney can be related to climatic events that have been documented within the Southern Victoria Land region and indicate that the lakes respond significantly to regional and, perhaps, global climate forcing.

Keywords

Lake Bonney Holocene helium isotopes ice cover diffusion model age dating Taylor Valley Antarctica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baroni, C., Orombelli, G. 1994Abandoned penguin rookeries as Holocene paleoclimatic indicators in AntarcticaGeology222326Google Scholar
  2. Broecker, W. S. 2001Was the Medieval Warm Period global?Science29114971499Google Scholar
  3. Cerling, T. E., Craig, H. 1994Cosmogenic 3He production rates from 39° to 46° latitude, western USA and FranceGeochim. Cosmochim. Acta58249255Google Scholar
  4. Chinn T. J. H. (1993) Physical hydrology of the Dry Valley lakes, In Physical and Biogeochemical Processes in Antarctic Lakes (Eds. W. S. Green and E. I. Friedmann), pp. 1–52, American Geophysical Union.Google Scholar
  5. Clarke, W. B., Beg, M. A., Craig, H. 1969Excess He-3 in the sea: evidence for terrestrial primordial heliumEarth and Planetary Science Letters6213221Google Scholar
  6. Cook, E. R., Palmer, J. G., Cook, B. I., Hogg, A., D’Arrigo, R. D. 2002A multi-millennial palaeoclimatic resource from Lagarostrobobs colensoi tree-rings at Oroko Swamp, New ZealandGlobal and Planetary Change33209220Google Scholar
  7. Craig H. and Poreda R. J. (1986) Cosmogenic 3He and model erosion rates in terrestrial rocks. Transactions of the American Geophysical Union 67, 414.Google Scholar
  8. Craig, H., Wharton, R. A., McKay, C. P. 1991Oxygen supersaturation in ice-covered Antarctic lakes: Biological versus physical contributionsScience255318321Google Scholar
  9. Doran, P. T., Priscu, J. C., Lyons, W. B., Walsh, J. E., Foutain, A. G., McKnight, D. M., Moorhead, D. L., Virginia, R. A., Wall, D. H., Clow, G. P., Fritsen, C. H., McKay, C. P., Parsons, A. N. 2002Antarctic climate cooling and terrestrial ecosystem responseNature415517520Google Scholar
  10. Doran, P. T., Fritsen, C. H., McKay, C. P., Priscu, J. C., Adams, E. E. 2003Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lakeProc. of the National Academy of Sciences of the United States of America1002631Google Scholar
  11. Doran, P. T., Wharton, R. A.,Jr., Lyons, W. B. 1994Paleolimnology of the McMurdo Dry Valley, AntarcticaJ. of Paleolimnology1085114Google Scholar
  12. Fountain A. G., Dana G. L., Lewis K. J., Vaughn B. H. and McKnight D. M. (1998) Glaciers of the McMurdo Dry Valleys, Southern Victoria Land, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica (Ed. J. C. Priscu), pp. 65–76, American Geophysical Union.Google Scholar
  13. Graham E. Y., Lyons W. B. and Welch K. A. (1999) The concentration and behavior of uranium in Antarctic lakes and streams. In Plasma Source Mass Spectrometry: New Developments and Applications. Eds. G. Holland and S. D. Tanner, Royal Society of Chemistry, pp 132–140.Google Scholar
  14. Hall, B. L., Denton, G. H., Hendy, C. H. 2000Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, AntarcticaGeografiska Annaler, Series A: Physical Geography82A275303Google Scholar
  15. Hendy, C. H. 2000Late Quaternary lakes in the McMurdo Sound region of AntarcticaGeografiska Annaler. Series A: Physical Geography82A411432Google Scholar
  16. Hendy, C. H., Wilson, A. T., Popplewell, K. B., House, D. A. 1977Dating of geochemical events in Lake Bonney, Antarctica and their relation to glacial and climatic changesNew Zealand J. of Geology and Geophysics2011031122Google Scholar
  17. Hood, E. M., Howes, B. L., Jenkins, W. J. 1998Dissolved gas dynamics in perennially ice-covered Lake Fryxell, AntarcticaLimnology and Oceanography43265272Google Scholar
  18. Hunt, A. G. 2000Diffusional release of helium-4 from mineral phases as indicators of groundwater age and depositional historyUniversity of RochesterRochester, NYPh.D.Google Scholar
  19. Jahne, B., Heinz, G., Dietrich, W. 1987Measurement of sparingly soluble gases in waterJ. Geophysical Research921076710776Google Scholar
  20. Leventer, A., DeMaster, D. J., Dunbar, R. B. 1993Diatom evidence of late Holocene climatic events in Granite Harbor, AntarcticaPaleooceanography18373386Google Scholar
  21. Lyons, W. B., Fountain, A., Doran, P., Priscu, J. C., Neumann, K., Welch, K. A. 2000Importance of landscape position and legacy: The evolution of the lakes in Taylor Valley, AntarcticaFreshwater Biology43355367Google Scholar
  22. Matsubaya, O., Sakai, H., Torii, T., Burton, H., Kerry, K. 1979Antarctic saline lakes-stable isotopic ratios, chemical compositions, and evolutionGeochimica et Cosmochimica Acta43725Google Scholar
  23. Poreda R. and Craig H. (1988) Helium isotope ratios in Easter Microplate basalts. Transactions of the American Geophysical Union 69, 1473.Google Scholar
  24. Poreda, R., Craig, H. 1992He and Sr isotopes in the Lau Basin mantle: depleted and primitive mantle componentsEarth and Planetary Science Letters113487493Google Scholar
  25. Poreda, R. J., Cerling, T. E. 1992Cosmogenic neon in recent lavas from the western United StatesGeophysical Research Letters1918631866Google Scholar
  26. Poreda, R. J., Farley, K. A. 1992Rare gases in Samoan xenolithsEarth and Planetary Science Letters113129144Google Scholar
  27. Priscu, J. C. (1999) Year-round access to the McMurdo region; opportunities for science and education; report of a National Science Foundation workshop. Montana State University, College of Agriculture, Department of Land Resources and Environmental Sciences.Google Scholar
  28. Smith, G. I., Friedman, I. 1983Climatic significance of lacustrine deposits around Lake Vanda and Don Juan Pond, AntarcticaU. S. Geological SurveyRestonCircular C-0911Google Scholar
  29. Spigel, R. H., Priscu, J. C. 1996Evolution of temperature and salt structure of Lake Bonney, a chemically stratified Antarctic lakeHydrobiologia321177190Google Scholar
  30. Spigel R. H. and Priscu J. C. (1998) Physical limnology of the McMurdo Dry Valleys lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica (Ed. J. C. Priscu), pp. 153–188, American Geophysical Union.Google Scholar
  31. Steig, E. J., Grootes, P. M., Hall, B. L., Mayewski, P. A., Morse, D. L., Stuiver, M., Twickler, M. S., Waddington, E. D., Whitlow, S. I. 2000Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, AntarcticaGeografiska Annaler, Series A: Physical Geography82213235Google Scholar
  32. Torgersen, T., O’Donnell, J. 1991The degassing flux from the solid earth—release by fracturingGeophysical Research Letters18951954Google Scholar
  33. Waddington E. D. and Clow G. D. (1997) Warming in South Victoria Land, Antarctica from borehole thermometry. EOS Transactions 78, F41.Google Scholar
  34. Weiss, R. F. 1970The solubility of nitrogen, oxygen, and argon in water and seawaterDeep Sea Research17721735Google Scholar
  35. Weiss, R. F., Price, B. A. 1989Dead Sea gas solubilitiesEarth and Planetary Science Letters92710Google Scholar
  36. Welch, K. A., Lyons, W. B., Graham, E., Neumann, K., Thomas, J. M., Mikesell, D. 1996Determination of major element chemistry in terrestrial waters from Antarctica by ion chromatographyJ. of ChromatographyA739257263Google Scholar
  37. Wilch, T. R., Lux, D. R., Denton, G. H., McIntosh, W. C. 1993Minimal Pliocene-Pleistocene uplift of the dry valleys sector of the Transantarctic Mountains: A key parameter in ice-sheet reconstructionsGeology21841844Google Scholar
  38. Wilson, A. T. 1964Evidence from chemical diffusion of a climatic change in the McMurdo Dry Valleys 1200 years agoNature201176177Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Robert J. Poreda
    • 1
  • Andrew G. Hunt
    • 1
    • 3
  • W. Berry Lyons
    • 2
    Email author
  • Kathleen A. Welch
    • 2
  1. 1.Department of Earth and Environmental SciencesUniversity of RochesterRochesterUSA
  2. 2.Byrd Polar Research CenterOhio State UniversityColumbusUSA
  3. 3.US Geological SurveyDenverUSA

Personalised recommendations