Aquatic Geochemistry

, Volume 10, Issue 3–4, pp 221–238 | Cite as

Reach-Scale Cation Exchange Controls on Major Ion Chemistry of an Antarctic Glacial Meltwater Stream

  • Michael N. Gooseff
  • Diane M. Mcknight
  • Robert L. Runkel


McMurdo dry valleys of Antarctica represent the largest of the ice-free areas on the Antarctic continent, containing glaciers, meltwater streams, and closed basin lakes. Previous geochemical studies of dry valley streams and lakes have addressed chemical weathering reactions of hyporheic substrate and geochemical evolution of dry valley surface waters. We examine cation transport and exchange reactions during a stream tracer experiment in a dry valley glacial meltwater stream. The injection solution was composed of dissolved Li+, Na+, K+, and Cl-. Chloride behaved conservatively in this stream, but Li+, Na+, and K+ were reactive to varying degrees. Mass balance analysis indicates that relative to Cl-, Li+ and K+ were taken up in downstream transport and Na+ was released. Simulations of conservative and reactive (first-order uptake or generation) solute transport were made with the OTIS (one-dimensional solute transport with inflow and storage) model. Among the four experimental reaches of Green Creek, solute transport simulations reveal that Li+ was removed from stream water in all four reaches, K+ was released in two reaches, taken up in one reach, and Na+ was released in all four reaches. Hyporheic sediments appear to be variable with uptake of Li+ in two reaches, uptake of K+ in one reach, release of K+ in two reaches, and uptake of Na+ in one reach. Mass balances of the conservative and reactive simulations show that from 1.05 to 2.19 moles of Li+ was adsorbed per reach, but less than 0.3 moles of K+ and less than 0.9 moles of Na+ were released per reach. This suggests that either (1) exchange of another ion which was not analyzed in this experiment or (2) that both ion exchange and sorption control inorganic solute transport. The elevated cation concentrations introduced during the experiment are typical of initial flows in each flow season, which flush accumulated dry salts from the streambed. We propose that the bed sediments (which compose the hyporheic zone) modulate the flushing of these salts during initial flows each season, due to ion exchange and sorption reactions.


ion exchange major ion chemistry McMurdo dry valleys reactive solute transport stream tracer experiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angino, E. E., Armitage, K. B., Tash, J. C. 1962Chemical stratification in Lake Fryxell, Victorialand, AntarcticaScience1383436Google Scholar
  2. Bencala, K. E. 1983Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorptionWater Resour. Res.19732738Google Scholar
  3. Bencala, K. E., Kennedy, V. C., Zellweger, G. W., Jackman, A. P., Avanzino, R. J. 1984Interactions of solutes and streambed sediment: 1. An experimental analysis of cation and anion transport in a mountain streamWater Resour. Res.2017971803Google Scholar
  4. Bencala, K. E. 1984Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transportWater Resour. Res.2018041814Google Scholar
  5. Cerling, T. E., Morrison, S. J., Sobocinski, R. W., Larsen, I. L. 1990Sediment-water interaction in a small stream: Adsorption of 137Cs by bed load sedimentsWater Resour. Res.2611651176Google Scholar
  6. Claridge, G. G. C., Campbell, I. B. 1977The salts in Antarctic soils, their distribution and relationship to soil processesSoil Sci.123377384Google Scholar
  7. Conovitz, P. A., McKnight, D. M., MacDonald, L. H., Fountain, A. G., House, H. R. 1998

    Hydrological processes influencing streamflow variation in Fryxell Basin, Antarctica

    Priscu, J. C. eds. Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, AntarcticaAmerican Geophysical UnionWashington, D.C.93108Antarctic Research Series, Vol. 73
    Google Scholar
  8. Denton, G. H., Bockheim, J. G., Wilson, S. C., Stuiver, M. 1989Late Wisconsin and early Holocene glacial history, inner Ross embayment, AntarcticaQuatern. Res.31151182Google Scholar
  9. Doran, P. T., Wharton, R. A., Lyons, W. B. 1994Paleolimnology of the McMurdo Dry Valleys, AntarcticaJ. Paleolimnol.1085114Google Scholar
  10. Forsman, K. J., Johansson, H., Jonsson, K. 2002The effects of partly irreversible solute exchange: Comparison between conservative and sorptive transport in streamsJ. Hydrol.256115Google Scholar
  11. Freeman, C., Chapman, P. J., Gilman, K., Lock, M. A., Reynolds, B., Weather, H. S. 1995Ion-exchange mechanisms and the entrapment of nutrients by river biofilmsHydrobiol.2976165Google Scholar
  12. Gooseff, M. N., McKnight, D. M., Lyons, W. B., Blum, A. E. 2002Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry ValleysWater Resour. Res.381279doi:1210.1029/2001WR000834Google Scholar
  13. Gooseff, M. N., McKnight, D. M., Runkel, R. L., Vaughn, B. H. 2003Determining long-timescale hyporheic zone flow paths in Antarctic streamsHydrol. Proc.1716911710Google Scholar
  14. Gooseff M. N., McKnight D. M., Runkel R. L. and Duff J. H. (in press) Denitrification and hydrologic transient storage in a glacial melt water stream, McMurdo Dry Valleys, Antarctica Limnol. Oceanogr.Google Scholar
  15. Green, W. J., Angle, M. P., Chave, K. E. 1988The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry ValleysGeochim. Cosmochim. Acta5212651274Google Scholar
  16. Hendy, C. H., Healy, T. R., Raymer, E. M., Shaw, J., Wilson, A.T. 1979Late Pleistocene glacial chronology of the Taylor Valley, Antarctica and the global climateQuatern. Res.11172184Google Scholar
  17. Hodson , A., Tranter, M., Gurnell, A., Clark, M., Hagen, J.O. 2002The hydrochemistry of Bayelva, a high Arctic proglacial stream in SvalbardJ. Hydrol.25791114Google Scholar
  18. Kuwabara, J. S., Leland, H. V., Bencala, K. E. 1984Copper transport along a Sierra Nevada streamJ. Environ. Eng.110646655Google Scholar
  19. Lemmens, M., Roger, M. 1978Influence of ion exchange on dissolved load of alpine meltwatersEarth Surf. Proc.3179187Google Scholar
  20. Lyons, W. B., Welch, K. A. 1997Lithium in waters of a polar desertGeochim. Cosmochim. Acta6143094319Google Scholar
  21. Lyons, W. B., Welch, K. A., Nezat, C. A., Crick, K., Toxey, J. K., Mastrine, J. A. 1997

    Chemical weathering rates and reactions in the Lake Fryxell Basin, Taylor Valley: Comparison to temperate river basins

    Lyons, W. B.Howard-Williams, C.Hawes, I. eds. Ecosystem Processes in Antarctic Ice-free LandscapesBalkema PressRotterdam, The Netherlands91114
    Google Scholar
  22. Maurice, P. A., McKnight, D. M., Leff, L., Fulghum, J. E., Gooseff, M. 2002Direct observations of aluminosilicate weathering in the hyporheic zone of an Antarctic Dry Valley streamGeochim. Cosmochim. Acta6613351347Google Scholar
  23. McKnight, D. M., Alger, A. S., Tate, C. M., Shupe, G., Spaulding, S. 1998

    Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, Southern Victoria Land, Antarctica

    Priscu, J. C. eds. Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, AntarcticaAmerican Geophysical UnionWashington, D.C.109128Antarctic Research Series, Vol. 73.
    Google Scholar
  24. McKnight, D. M., Niyogi, D. K., Alger, A. S., Bomblies, A., Conovitz, P. A., Tate, C. M. 1999Dry Valley streams in Antarctica: ecosystems waiting for waterBioScience49985995Google Scholar
  25. McKnight, D. M., Runkel, R. L., Duff, J. H., Tate, C. M., Moorhead, D. 2004Inorganic nitrogen and phosphorous dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communitiesJ. N. Am. Benthol. Soc23171188Google Scholar
  26. Nakagawa, Y., Iwatsubo, G. 2000Water chemistry in a number of mountainous streams of east AsiaJ. Hydrol.240118130Google Scholar
  27. Nezat, C. A., Lyons, W. B., Welch, K. A. 2001Chemical weathering in streams of a polar desert (Taylor Valley, Antarctica)Geol. Soc. Am. Bull.11314011408Google Scholar
  28. Norton, S. A., Wagai, R., Navratil, T., Kaste, J. M., Rissberger, F. A. 2000Response of a first-order stream in Maine to short-term in-stream acidificationHydrol. Earth Sys. Sci.4383391Google Scholar
  29. Péwé, T. L. 1960Multiple glaciation in the McMurdo Sound Region, Antarctica – A progress reportJ. Geol.68498514Google Scholar
  30. Runkel, R. L. 1998One-dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers. Water Resources Investigation Report 98-4018. U.S. Geological SurveyDenverColoradoGoogle Scholar
  31. Runkel, R. L., McKnight, D. M., Andrews, E. D. 1998Analysis of transient storage subject to unsteady flow: diel flow variation in an Antarctic streamJ. N. Am. Benthol. Soc.17143154Google Scholar
  32. Scott, D. T., Gooseff, M. N., Bencala, K. E., Runkel, R. L. 2003Automated calibration of a stream solute transport model: implications for interpretation of biogeochemical parametersJ. N. Am. Benthol. Soc.22492510Google Scholar
  33. Shih, C.-S., Gloyna, E. F. 1969Influence of sediments on transport of solutesJ. Hydraul. Div., Proc. Am. Soc. Civil Eng.9513471367Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Michael N. Gooseff
    • 1
  • Diane M. Mcknight
    • 2
  • Robert L. Runkel
    • 3
  1. 1.Department of Aquatic, Watershed and Earth ResourcesUtah State UniversityLoganUSA
  2. 2.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  3. 3.United States Geologic SurveyLakewoodUSA

Personalised recommendations