Analysis in Theory and Applications

, Volume 27, Issue 3, pp 239–250 | Cite as

Weighted approximation of r-monotone functions on the real line by Bernstein operators

  • Laiyi ZhuEmail author
  • Xiaojie Zhu
  • Xing Liu


In this paper, we give error estimates for the weighted approximation of r-monotone functions on the real line with Freud weights by Bernstein-type operators.

Key words

Freud weight r-monotone function Bernstein-type operator 

AMS (2010) subject classification

41A10 41A25 41A36 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993.CrossRefGoogle Scholar
  2. [2]
    Ditzian, Z. and Totik, V., Moduli of Smoothness, Springer New York, 1987.CrossRefGoogle Scholar
  3. [3]
    Levitan, D., Shape Preserving Approximation by Polynomials, J. Comput. Appl. Math., 121(2000), 73–94.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Maizlish, O., Shape Preserving Approximation on the Real line with Exponential Weights, J. Approx. Theory, 157(2009), 127–133.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Petrov, P. P., Some Sharp Inequalities for n-monotone Functions, m Acta Math. Hungar., 108:1–2(2005), 37–46.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Robers, A. W. and Varberg, D. E., convex Functions, Academic Press, New York, 1973.Google Scholar
  7. [7]
    Vecchia, B. D., Mastroianni, G. and Szabados, J., Weighted Approximation of Functions on the Real Line by Bernstein Polynomials, J. Approx. Theory, 127(2004), 223–239.MathSciNetCrossRefGoogle Scholar

Copyright information

© Editorial Board of Analysis in Theory and Applications and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Renmin University of ChinaBeijingChina
  2. 2.Peking UniversityBeijingChina
  3. 3.School of InformationRenmin University of ChinaBeijingP. R. China
  4. 4.School of mathematicalPeking UniversityBeijingP. R. China

Personalised recommendations