Advertisement

Apoptosis

pp 1–12 | Cite as

microRNA-499a promotes the progression and chemoresistance of cervical cancer cells by targeting SOX6

  • Yibing ChenEmail author
  • Yucen Song
  • Yanjun Mi
  • Huan Jin
  • Jun Cao
  • Haolong Li
  • Liping Han
  • Ting Huang
  • Xiaofei Zhang
  • Shumin Ren
  • Qian Ma
  • Zhengzhi ZouEmail author
Article
  • 32 Downloads

Abstract

Emerging evidence has indicated that microRNAs are involved in multiple processes of cancer development. Previous studies have demonstrated that microRNA-499a (miR-499a) plays both oncogenic and tumor suppressive roles in several types of malignancies, and genetic variants in miR-499a are associated with the risk of cervical cancer. However, the biological roles of miR-499a in cervical cancer have not been investigated. Quantitative real-time PCR was used to assess miR-499a expression in cervical cancer cells. Mimics or inhibitor of miR-499a was transfected into cervical cancer cells to upregulate or downregulate miR-499a expression. The effects of miR-499a expression change on cervical cancer cells proliferation, colony formation, tumorigenesis, chemosensitivity, transwell migration and invasion were assessed. The potential targets of miR-499a were predicted using online database tools and validated using real-time PCR, Western blot and luciferase reporter experiments. miR-499a was significantly upregulated in cervical cancer cells. Moreover, overexpression of miR-499a significantly enhanced the proliferation, cell cycle progression, colony formation, apoptosis resistance, migration and invasion of cervical cancer cells, while inhibiting miR-499a showed the opposite effects. Further exploration demonstrated that Sex-determining region Y box 6 was the direct target of miR-499a. miR-499a-induced SOX6 downregulation mediated the oncogenic effects of miR-499a in cervical cancer. Inhibiting miR-499a could enhance the anticancer effects of cisplatin in the xenograft mouse model of cervical cancer. Our findings for the first time suggest that miRNA-499a may play an important role in the development of cervical cancer and could serve as a potential therapeutic target.

Keywords

Cervical cancer miR-499a Sex-determining region Y box 6 (SOX6) Cell proliferation and invasion Chemoresistance 

Notes

Acknowledgements

We would like to thank the Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform for their kind help and support to this work.

Funding

This work was supported by the National Natural Science Foundation of China (81772643, 81772803, U1604172, 81702860, 81871877, 81402281 & 81402187), Henan College Innovation Support Program (18IRTSTHN024), Henan Medical Program (201602072 & 201701002) and Henan Science & Technology Program (172102310271). Scientific and Technological Planning Project of Guangzhou City (201805010002 and 201904010038).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet 393:169–182PubMedCrossRefGoogle Scholar
  2. 2.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379PubMedCrossRefGoogle Scholar
  3. 3.
    Zhu J, Zou Z, Nie P et al (2016) Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Cell Death Dis 7:e2454PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ao X, Nie P, Wu B et al (2016) Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregulation of NCOA3. Cell Death Dis 7:e2463PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Srivastava SK, Ahmad A, Zubair H et al (2017) MicroRNAs in gynecological cancers: small molecules with big implications. Cancer Lett 407:123–138PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Park S, Eom K, Kim J et al (2017) MiR-9, miR-21, and miR-155 as potential biomarkers for HPV positive and negative cervical cancer. BMC Cancer 17:658PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Xu J, Zhang W, Lv Q, Zhu D (2015) Overexpression of miR-21 promotes the proliferation and migration of cervical cancer cells via the inhibition of PTEN. Oncol Rep 33:3108–3116PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lei C, Wang Y, Huang Y et al (2012) Up-regulated miR155 reverses the epithelial-mesenchymal transition induced by EGF and increases chemo-sensitivity to cisplatin in human Caski cervical cancer cells. PLoS ONE 7:e52310PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mitamura T, Watari H, Wang L et al (2013) Downregulation of miRNA-31 induces taxane resistance in ovarian cancer cells through increase of receptor tyrosine kinase MET. Oncogenesis 2:e40PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fan Z, Cui H, Yu H et al (2016) MiR-125a promotes paclitaxel sensitivity in cervical cancer through altering STAT3 expression. Oncogenesis 5:e197PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lin F, Wang P, Shen Y, Xie X (2015) Upregulation of microRNA-224 sensitizes human cervical cells SiHa to paclitaxel. Eur J Gynaecol Oncol 36:432–436PubMedPubMedCentralGoogle Scholar
  12. 12.
    van Rooij E, Quiat D, Johnson BA et al (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–673PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhao J, Yu H, Yan P et al (2019) Circulating MicroRNA-499 as a diagnostic biomarker for acute myocardial infarction: a meta-analysis. Dis Mark 2019:6121696Google Scholar
  14. 14.
    Chen C, Yang S, Chaugai S et al (2014) Meta-analysis of Hsa-mir-499 polymorphism (rs3746444) for cancer risk: evidence from 31 case-control studies. BMC Med Genet 15:126PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ding HX, Lv Z, Yuan Y, Xu Q (2018) MiRNA polymorphisms and cancer prognosis: a systematic review and meta-analysis. Front Oncol 8:596PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhou B, Wang K, Wang Y et al (2011) Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. Mol Carcinog 50:499–505PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Qiu F, Yang L, Ling X et al (2015) Sequence variation in mature MicroRNA-499 confers unfavorable prognosis of lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 21:1602–1613PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Du M, Lu D, Wang Q et al (2014) Genetic variations in microRNAs and the risk and survival of renal cell cancer. Carcinogenesis 35:1629–1635PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ahn DH, Rah H, Choi YK et al (2013) Association of the miR-146aC%3eG, miR-149T%3eC, miR-196a2T%3eC, and miR-499A%3eG polymorphisms with gastric cancer risk and survival in the Korean population. Mol Carcinog 52(Suppl 1):E39–51PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Farokhizadeh Z, Dehbidi S, Geramizadeh B et al (2019) Association of MicroRNA polymorphisms with hepatocellular carcinoma in an iranian population. Ann Lab Med 39:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wang BQ, Yang B, Yang HC et al (2018) MicroRNA-499a decelerates glioma cell proliferation while accelerating apoptosis through the suppression of Notch1 and the MAPK signaling pathway. Brain Res Bull 142:96–106PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hu Z, Chen X, Zhao Y et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28:1721–1726PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Li M, Zhang Q, Wu L et al (2014) Serum miR-499 as a novel diagnostic and prognostic biomarker in non-small cell lung cancer. Oncol Rep 31:1961–1967PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Li M, Zhang S, Wu N et al (2016) Overexpression of miR-499-5p inhibits non-small cell lung cancer proliferation and metastasis by targeting VAV3. Sci Rep 6:23100PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Tsukamoto O, Miura K, Mishima H et al (2014) Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecol Oncol 132:715–721PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Xiang Z, Wang S, Xiang Y (2014) Up-regulated microRNA499a by hepatitis B virus induced hepatocellular carcinogenesis via targeting MAPK6. PLoS ONE 9:e111410PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhang X, Gee H, Rose B et al (2016) Regulation of the tumour suppressor PDCD4 by miR-499 and miR-21 in oropharyngeal cancers. BMC Cancer 16:86PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Liu X, Zhang Z, Sun L et al (2011) MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis 32:1798–1805PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    He S, Li Z, Yu Y et al (2019) Exosomal miR-499a-5p promotes cell proliferation, migration and EMT via mTOR signaling pathway in lung adenocarcinoma. Exp Cell Res 379:203–213PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chen X, Li Q, Liu X et al (2016) Defining a population of stem-like human prostate cancer cells that can generate and propagate castration-resistant prostate cancer. Clin Cancer Res 22:4505–4516PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wang DD, Chen YB, Zhao JJ et al (2019) TES functions as a Mena-dependent tumor suppressor in gastric cancer carcinogenesis and metastasis. Cancer Commun 39:3CrossRefGoogle Scholar
  32. 32.
    Zou Z, Yuan Z, Zhang Q et al (2012) Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 8:1798–1810PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang S, Zou Z, Luo X et al (2018) LRH1 enhances cell resistance to chemotherapy by transcriptionally activating MDC1 expression and attenuating DNA damage in human breast cancer. Oncogene 37:3243–3259PubMedCrossRefGoogle Scholar
  34. 34.
    Chen Y, Pan K, Li S et al (2012) Decreased expression of V-set and immunoglobulin domain containing 1 (VSIG1) is associated with poor prognosis in primary gastric cancer. J Surg Oncol 106:286–293PubMedCrossRefGoogle Scholar
  35. 35.
    Chen P, Luo X, Nie P et al (2017) CQ synergistically sensitizes human colorectal cancer cells to SN-38/CPT-11 through lysosomal and mitochondrial apoptotic pathway via p53-ROS cross-talk. Free Radic Biol Med 104:280–297PubMedCrossRefGoogle Scholar
  36. 36.
    Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M et al (2019) microRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 234:17064–17099PubMedGoogle Scholar
  37. 37.
    Li X, Wang J, Jia Z et al (2013) MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS ONE 8:e74504PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jarret A, McFarland AP, Horner SM et al (2016) Hepatitis-C-virus-induced microRNAs dampen interferon-mediated antiviral signaling. Nat Med 22:1475–1481PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu J, Liang X, Zhou D et al (2016) Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med 8:1212–1228PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zhang X, Dong H, Liu Y et al (2019) Tetramethylpyrazine partially relieves hypoxia-caused damage of cardiomyocytes H9c2 by downregulation of miR-449a. J Cell Physiol.  https://doi.org/10.1002/jcp.28151 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jia Z, Wang J, Shi Q et al (2016) SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis 21:174–183PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wan Q, Xu T, Ding W et al (2018) miR-499-5p attenuates mitochondrial fission and cell apoptosis via p21 in doxorubicin cardiotoxicity. Front Genet 9:734PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Yang X, Li X, Zhou B (2018) A meta-analysis of miR-499 rs3746444 polymorphism for cancer risk of different systems: evidence from 65 case-control studies. Front Physiol 9:737PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Liu X, Xu B, Li S et al (2015) Association of SNPs in miR-146a, miR-196a2, and miR-499 with the risk of endometrial/ovarian cancer. Acta Biochim Biophys Sin 47:564–566PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sun JC, Zheng B, Sun RX et al (2019) MiR-499a-5p suppresses apoptosis of human nucleus pulposus cells and degradation of their extracellular matrix by targeting SOX4. Biomed Pharmacother 113:108652PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Yi Z, Cohen-Barak O, Hagiwara N et al (2006) Sox6 directly silences epsilon globin expression in definitive erythropoiesis. PLoS Genet 2:e14PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kurtsdotter I, Topcic D, Karlen A et al (2017) SOX5/6/21 prevent oncogene-driven transformation of brain stem cells. Cancer Res 77:4985–4997PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Qin YR, Tang H, Xie F et al (2011) Characterization of tumor-suppressive function of SOX6 in human esophageal squamous cell carcinoma. Clin Cancer Res 17:46–55PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Guo X, Yang M, Gu H et al (2013) Decreased expression of SOX6 confers a poor prognosis in hepatocellular carcinoma. Cancer Epidemiol 37:732–736PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Xie Q, Chen X, Lu F et al (2012) Aberrant expression of microRNA 155 may accelerate cell proliferation by targeting sex-determining region Y box 6 in hepatocellular carcinoma. Cancer 118:2431–2442PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Wang J, Ding S, Duan Z et al (2016) Role of p14ARF-HDM2-p53 axis in SOX6-mediated tumor suppression. Oncogene 35:1692–1702PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Iguchi H, Urashima Y, Inagaki Y et al (2007) SOX6 suppresses cyclin D1 promoter activity by interacting with beta-catenin and histone deacetylase 1, and its down-regulation induces pancreatic beta-cell proliferation. J Biol Chem 282:19052–19061PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jiang W, Yuan Q, Jiang Y et al (2018) Identification of Sox6 as a regulator of pancreatic cancer development. J Cell Mol Med 22:1864–1872PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yibing Chen
    • 1
    Email author
  • Yucen Song
    • 1
  • Yanjun Mi
    • 2
  • Huan Jin
    • 5
  • Jun Cao
    • 1
  • Haolong Li
    • 5
  • Liping Han
    • 3
  • Ting Huang
    • 5
  • Xiaofei Zhang
    • 4
  • Shumin Ren
    • 1
  • Qian Ma
    • 1
  • Zhengzhi Zou
    • 5
    Email author
  1. 1.Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated HospitalZhengzhou UniversityZhengzhouChina
  2. 2.Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen UniversityTeaching Hospital of Fujian Medical UniversityXiamenChina
  3. 3.Department of Gynecology and Obstetrics, First Affiliated HospitalZhengzhou UniversityZhengzhouChina
  4. 4.Department of Medical Oncology, First Affiliated HospitalZhengzhou UniversityZhengzhouChina
  5. 5.MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of BiophotonicsSouth China Normal UniversityGuangzhouChina

Personalised recommendations