Advertisement

Apoptosis

, Volume 25, Issue 1–2, pp 135–150 | Cite as

Lysophosphatidic acid promotes survival of T lymphoma cells by altering apoptosis and glucose metabolism

  • Vishal Kumar Gupta
  • Pradip Kumar Jaiswara
  • Pratishtha Sonker
  • Shiv Govind Rawat
  • Rajan Kumar Tiwari
  • Ajay KumarEmail author
Article

Abstract

Lysophosphatidic acid (LPA) is a bioactive lipid, which plays an indispensable role in various physiological and pathological processes. Moreover, an elevated level of LPA has been observed in malignancies of different origins and implicated in their progression via modulation of proliferation, apoptosis, invasion and metastasis. Interestingly, few recent reports suggest a pivotal role of LPA-modulated metabolism in oncogenesis of ovarian cancer. However, little is understood regarding the role of LPA in the development and progression of T cell malignancies, which are considered as one of the most challenging neoplasms for clinical management. Additionally, mechanisms underlying the LPA-dependent modulation of glucose metabolism in T cell lymphoma are also not known. Therefore, the present study was undertaken to explore the role of LPA-altered apoptosis and glucose metabolism on the survival of T lymphoma cells. Observations of this investigation suggest that LPA supports survival of T lymphoma cells via altering apoptosis and glucose metabolism through changing the level of reactive species, namely nitric oxide and reactive oxygen species along with expression of various survival and glucose metabolism regulatory molecules, including hypoxia-inducible factor 1-alpha, p53, Bcl2, and glucose transporter 3, hexokinase II, pyruvate kinase muscle isozyme 2, monocarboxylate transporter 1, pyruvate dehydrogenase kinase 1. Taken together‚ the results of the present investigation decipher the novel mechanisms of LPA-mediated survival of T lymphoma cells via modulation of apoptosis and glucose metabolism.

Keywords

Apoptosis Dalton’s lymphoma Glucose metabolism Lysophosphatidic acid Survival 

Abbreviations

ANOVA

Analysis of variance

BCIP/NBT

5-Bromo-4-chloro-3′-indolyphosphate/nitro-blue tetrazolium

DCFDA

2′,7′-Dichlorofluorescin diacetate

DL cells

Dalton’s lymphoma cells

EDTA

Ethylenediaminetetraacetic acid

FBS

Fetal bovine serum

FITC

Fluorescein isothiocyanate

GLUT 3

Glucose transporter 3

HIF1-α

Hypoxia-inducible factor 1-alpha

HKII

HexokinaseII

LPA

Lysophosphatidic acid

MCT1

Monocarboxylate transporter 1

MTT

3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide

NO

Nitric oxide

PBS

Phosphate-buffered saline

PDK1

Pyruvate dehydrogenase kinase 1

PI

Propidium iodide

PIPES

Piperazine-N,N′-bis(2-ethanesulfonic acid)

ROS

Reactive oxygen species

RPMI

Roswell park memorial institute medium

RT-PCR

Reverse-transcription polymerase chain reaction

SDS

Sodium dodecyl sulfate

Notes

Acknowledgements

The fellowship to Vishal Kumar Gupta is supported by a project (ECR/2016/001117) sanctioned by Department of Science & Technology, New Delhi. We thankfully acknowledge fellowship support to Pradip Kumar Jaiswara [Award No. 1002/(SC)(CSIR-UGC NET DEC. 2016]; Shiv Govind Rawat [Award No. 09/013(0772/2018-EMR-I)] from Council of Scientific and Industrial Research (CSIR), New Delhi; Pratishtha Sonker [Award No. F117.1/201516/ RGNF201517SCUTT4822/(SAIII/Website)] from University Grants Commission (UGC), New Delhi; Rajan Kumar Tiwari [Award No. R/Dev/IX-Sch.(SRF-JRF-CAS-Zoology)/75159] from University Grants Commission-Career Advancement Scheme (UGC-CAS). Funding from University Grants Commission and Department of Science & Technology, New Delhi, India, in the form of UGC-Start-Up Research (F. No. 30-370/2017 (BSR)) and Early Career Research Award (ECR/2016/001117) is highly acknowledged. Financial support from Interdisciplinary School of Life Science (ISLS) and University Grants Commission-Universities with Potential for Excellence (UGC-UPE), Banaras Hindu University is also acknowledged. We also acknowledge UGC-CAS and DST-FIST program to the Department of Zoology, Banaras Hindu University, India. We acknowledge the support of Dr. S.D. Singh for the measurement of lactate level. We thank Prof. Sukh Mahendra Singh, School of Biotechnology, Banaras Hindu University, Varanasi, India, for providing few instrumentation facilities of his laboratory and his valuable suggestions.

Author contributions

The research work presented in this manuscript is part of the Ph.D. thesis of VKG. The experiments of this investigation were designed by AK and VKG. VKG has performed the entire experiment. The manuscript was written by AK and VKG. VKG, PKJ, PS, SGR, and RKT prepared reagents and analyzed the data. All authors read and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Dancs PT, Ruisanchez E, Balogh A, Panta CR, Miklos Z, Nusing RM, Aoki J, Chun J, Offermanns S, Tigyi G, Benyo Z (2017) LPA1 receptor-mediated thromboxane A2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction. FASEB J 31:1547–1555.  https://doi.org/10.1096/fj.201600735R CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Khandoga AL, Fujiwara Y, Goyal P, Pandey D, Tsukahara R, Bolen A, Guo H, Wilke N, Liu J, Valentine WJ, Durgam GG, Miller DD, Jiang G, Prestwich GD, Tigyi G, Siess W (2008) Lysophosphatidic acid-induced platelet shape change revealed through LPA(1–5) receptor-selective probes and albumin. Platelets 19:415–427.  https://doi.org/10.1080/09537100802220468 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sun Y, Kim NH, Yang H, Kim SH, Huh SO (2011) Lysophosphatidic acid induces neurite retraction in differentiated neuroblastoma cells via GSK-3beta activation. Mol Cells 31:483–489.  https://doi.org/10.1007/s10059-011-1036-0 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Susanto O, Koh YWH, Morrice N, Tumanov S, Thomason PA, Nielson M, Tweedy L, Muinonen-Martin AJ, Kamphorst JJ, Mackay GM, Insall RH (2017) LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells. J Cell Sci 130:3455–3466.  https://doi.org/10.1242/jcs.207514 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang G, Cheng Y, Zhang Q, Li X, Zhou J, Wang J, Wei L (2018) ATX-LPA axis facilitates estrogen induced endometrial cancer cell proliferation via MAPK/ERK signaling pathway. Mol Med Rep 17:4245–4252.  https://doi.org/10.3892/mmr.2018.8392 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sano T, Baker D, Virag T, Wada A, Yatomi Y, Kobayashi T, Igarashi Y, Tigyi G (2002) Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol Chem 277:21197–21206.  https://doi.org/10.1074/jbc.M201289200 CrossRefPubMedGoogle Scholar
  7. 7.
    Ye X, Ishii I, Kingsbury MA, Chun J (2002) Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta 1585:108–113CrossRefGoogle Scholar
  8. 8.
    Chen Y, Ramakrishnan DP, Ren B (2013) Regulation of angiogenesis by phospholipid lysophosphatidic acid. Front Biosci 18:852–861CrossRefGoogle Scholar
  9. 9.
    Leve F, Peres-Moreira RJ, Binato R, Abdelhay E, Morgado-Diaz JA (2015) LPA induces colon cancer cell proliferation through a cooperation between the ROCK and STAT-3 pathways. PLoS ONE 10:e0139094.  https://doi.org/10.1371/journal.pone.0139094 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yu X, Zhang Y, Chen H (2016) LPA receptor 1 mediates LPA-induced ovarian cancer metastasis: an in vitro and in vivo study. BMC Cancer 16:846.  https://doi.org/10.1186/s12885-016-2865-1 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hu X, Haney N, Kropp D, Kabore AF, Johnston JB, Gibson SB (2005) Lysophosphatidic acid (LPA) protects primary chronic lymphocytic leukemia cells from apoptosis through LPA receptor activation of the anti-apoptotic protein AKT/PKB. J Biol Chem 280:9498–9508.  https://doi.org/10.1074/jbc.M410455200 CrossRefPubMedGoogle Scholar
  12. 12.
    Sui Y, Yang Y, Wang J, Li Y, Ma H, Cai H, Liu X, Zhang Y, Wang S, Li Z, Zhang X, Wang J, Liu R, Yan Y, Xue C, Shi X, Tan L, Ren J (2015) Lysophosphatidic acid inhibits apoptosis induced by cisplatin in cervical cancer cells. Biomed Res Int 2015:598386.  https://doi.org/10.1155/2015/598386 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fulkerson Z, Wu T, Sunkara M, Kooi CV, Morris AJ, Smyth SS (2011) Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. J Biol Chem 286:34654–34663.  https://doi.org/10.1074/jbc.M111.276725 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16:635–649.  https://doi.org/10.1038/nrc.2016.77 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ha JH, Radhakrishnan R, Jayaraman M, Yan M, Ward JD, Fung KM, Moxley K, Sood AK, Isidoro C, Mukherjee P, Song YS, Dhanasekaran DN (2018) LPA induces metabolic reprogramming in ovarian cancer via a pseudohypoxic response. Cancer Res 78:1923–1934.  https://doi.org/10.1158/0008-5472.CAN-17-1624 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mukherjee A, Ma Y, Yuan F, Gong Y, Fang Z, Mohamed EM, Berrios E, Shao H, Fang X (2015) Lysophosphatidic acid up-regulates hexokinase II and glycolysis to promote proliferation of ovarian cancer cells. Neoplasia 17:723–734.  https://doi.org/10.1016/j.neo.2015.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mukherjee A, Wu J, Barbour S, Fang X (2012) Lysophosphatidic acid activates lipogenic pathways and de novo lipid synthesis in ovarian cancer cells. J Biol Chem 287:24990–25000.  https://doi.org/10.1074/jbc.M112.340083 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baumforth KR, Flavell JR, Reynolds GM, Davies G, Pettit TR, Wei W, Morgan S, Stankovic T, Kishi Y, Arai H, Nowakova M, Pratt G, Aoki J, Wakelam MJ, Young LS, Murray PG (2005) Induction of autotaxin by the Epstein-Barr virus promotes the growth and survival of Hodgkin lymphoma cells. Blood 106:2138–2146.  https://doi.org/10.1182/blood-2005-02-0471 CrossRefPubMedGoogle Scholar
  19. 19.
    Masuda A, Nakamura K, Izutsu K, Igarashi K, Ohkawa R, Jona M, Higashi K, Yokota H, Okudaira S, Kishimoto T, Watanabe T, Koike Y, Ikeda H, Kozai Y, Kurokawa M, Aoki J, Yatomi Y (2008) Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. Br J Haematol 143:60–70.  https://doi.org/10.1111/j.1365-2141.2008.07325.x CrossRefPubMedGoogle Scholar
  20. 20.
    Rizvi MA, Evens AM, Tallman MS, Nelson BP, Rosen ST (2006) T-cell non-Hodgkin lymphoma. Blood 107:1255–1264.  https://doi.org/10.1182/blood-2005-03-1306 CrossRefPubMedGoogle Scholar
  21. 21.
    Nair R, Kakroo A, Bapna A, Gogia A, Vora A, Pathak A, Korula A, Chakrapani A, Doval D, Prakash G, Biswas G, Menon H, Bhattacharya M, Chandy M, Parihar M, Vamshi Krishna M, Arora N, Gadhyalpatil N, Malhotra P, Narayanan P, Nair R, Basu R, Shah S, Bhave S, Bondarde S, Bhartiya S, Nityanand S, Gujral S, Tilak TVS, Radhakrishnan V (2018) Management of lymphomas: consensus document 2018 by an indian expert group. Indian J Hematol Blood Transfus 34:398–421.  https://doi.org/10.1007/s12288-018-0991-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kumar A, Kant S, Singh SM (2013) alpha-Cyano-4-hydroxycinnamate induces apoptosis in Dalton's lymphoma cells: role of altered cell survival-regulatory mechanisms. Anticancer Drugs 24:158–171.  https://doi.org/10.1097/CAD.0b013e3283586743 CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar A, Kant S, Singh SM (2013) Targeting monocarboxylate transporter by alpha-cyano-4-hydroxycinnamate modulates apoptosis and cisplatin resistance of Colo205 cells: implication of altered cell survival regulation. Apoptosis 18:1574–1585.  https://doi.org/10.1007/s10495-013-0894-7 CrossRefPubMedGoogle Scholar
  24. 24.
    Harish Kumar G, Chandra Mohan KV, Jagannadha Rao A, Nagini S (2009) Nimbolide a limonoid from Azadirachta indica inhibits proliferation and induces apoptosis of human choriocarcinoma (BeWo) cells. Invest New Drugs 27:246–252.  https://doi.org/10.1007/s10637-008-9170-z CrossRefPubMedGoogle Scholar
  25. 25.
    Somoza B, Guzman R, Cano V, Merino B, Ramos P, Diez-Fernandez C, Fernandez-Alfonso MS, Ruiz-Gayo M (2007) Induction of cardiac uncoupling protein-2 expression and adenosine 5'-monophosphate-activated protein kinase phosphorylation during early states of diet-induced obesity in mice. Endocrinology 148:924–931.  https://doi.org/10.1210/en.2006-0914 CrossRefPubMedGoogle Scholar
  26. 26.
    Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412PubMedGoogle Scholar
  27. 27.
    Lin CC, Lin CE, Lin YC, Ju TK, Huang YL, Lee MS, Chen JH, Lee H (2013) Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells. Biochem Biophys Res Commun 440:564–569.  https://doi.org/10.1016/j.bbrc.2013.09.104 CrossRefPubMedGoogle Scholar
  28. 28.
    Deng W, Wang DA, Gosmanova E, Johnson LR, Tigyi G (2003) LPA protects intestinal epithelial cells from apoptosis by inhibiting the mitochondrial pathway. Am J Physiol Gastrointest Liver Physiol 284:G821–G829.  https://doi.org/10.1152/ajpgi.00406.2002 CrossRefPubMedGoogle Scholar
  29. 29.
    Kelly PN, Strasser A (2011) The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 18:1414–1424.  https://doi.org/10.1038/cdd.2011.17 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Saunders JA, Rogers LC, Klomsiri C, Poole LB, Daniel LW (2010) Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells. Free Radic Biol Med 49:2058–2067.  https://doi.org/10.1016/j.freeradbiomed.2010.10.663 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Krzeslak A, Wojcik-Krowiranda K, Forma E, Jozwiak P, Romanowicz H, Bienkiewicz A, Brys M (2012) Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res 18:721–728.  https://doi.org/10.1007/s12253-012-9500-5 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J (1997) Immunohistochemical detection of Glut3 in human tumors and normal tissues. Anticancer Res 17:2747–2750PubMedGoogle Scholar
  33. 33.
    Wei M, Lu L, Sui W, Liu Y, Shi X, Lv L (2018) Inhibition of GLUTs by WZB117 mediates apoptosis in blood-stage Plasmodium parasites by breaking redox balance. Biochem Biophys Res Commun 503:1154–1159.  https://doi.org/10.1016/j.bbrc.2018.06.134 CrossRefPubMedGoogle Scholar
  34. 34.
    Chen J, Han Y, Zhu W, Ma R, Han B, Cong X, Hu S, Chen X (2006) Specific receptor subtype mediation of LPA-induced dual effects in cardiac fibroblasts. FEBS Lett 580:4737–4745.  https://doi.org/10.1016/j.febslet.2006.07.061 CrossRefPubMedGoogle Scholar
  35. 35.
    Gaits F, Salles JP, Chap H (1997) Dual effect of lysophosphatidic acid on proliferation of glomerular mesangial cells. Kidney Int 51:1022–1027CrossRefGoogle Scholar
  36. 36.
    Dong Y, Wu Y, Cui MZ, Xu X (2017) Lysophosphatidic acid triggers apoptosis in HeLa cells through the upregulation of Tumor Necrosis Factor Receptor Superfamily Member 21. Mediators Inflamm 2017:2754756.  https://doi.org/10.1155/2017/2754756 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci 19:448.  https://doi.org/10.3390/ijms19020448 CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Chen Q, Olashaw N, Wu J (1995) Participation of reactive oxygen species in the lysophosphatidic acid-stimulated mitogen-activated protein kinase kinase activation pathway. J Biol Chem 270:28499–28502.  https://doi.org/10.1074/jbc.270.48.28499 CrossRefPubMedGoogle Scholar
  39. 39.
    Cunnick JM, Dorsey JF, Standley T, Turkson J, Kraker AJ, Fry DW, Jove R, Wu J (1998) Role of tyrosine kinase activity of epidermal growth factor receptor in the lysophosphatidic acid-stimulated mitogen-activated protein kinase pathway. J Biol Chem 273:14468–14475.  https://doi.org/10.1074/jbc.273.23.14468 CrossRefPubMedGoogle Scholar
  40. 40.
    Du J, Sun C, Hu Z, Yang Y, Zhu Y, Zheng D, Gu L, Lu X (2010) Lysophosphatidic acid induces MDA-MB-231 breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS ONE 5:e15940.  https://doi.org/10.1371/journal.pone.0015940 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ (2013) Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol 62:89–95.  https://doi.org/10.1016/j.jacc.2013.03.070 CrossRefPubMedGoogle Scholar
  42. 42.
    Pierini D, Bryan NS (2015) Nitric oxide availability as a marker of oxidative stress. Methods Mol Biol 1208:63–71.  https://doi.org/10.1007/978-1-4939-1441-8_5 CrossRefPubMedGoogle Scholar
  43. 43.
    Matsuura K, Canfield K, Feng W, Kurokawa M (2016) Metabolic regulation of apoptosis in cancer. Int Rev Cell Mol Biol 327:43–87.  https://doi.org/10.1016/bs.ircmb.2016.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT, Cui B, Wang HF, Zhao Y, An F, Guo T, Liu XF, Zhang L, Lv L, Lv DK, Xu LZ, Xie JJ, Lin WX, Lam EW, Xu J, Liu Q (2018) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37:1119.  https://doi.org/10.1038/onc.2017.407 CrossRefPubMedGoogle Scholar
  45. 45.
    DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G, Au J, Long CP, Antoniewicz MR, Hay N (2018) Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun 9:446.  https://doi.org/10.1038/s41467-017-02733-4 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618.  https://doi.org/10.1074/jbc.M109950200 CrossRefPubMedGoogle Scholar
  47. 47.
    Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, Annis MG, Omeroglu A, Gao D, Leung S, Amir E, Clemons M, Aguilar-Mahecha A, Basik M, Vincent EE, St-Pierre J, Jones RG, Siegel PM (2015) PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 22:577–589.  https://doi.org/10.1016/j.cmet.2015.08.007 CrossRefPubMedGoogle Scholar
  48. 48.
    Corbet C, Feron O (2017) Tumour acidosis: from the passenger to the driver's seat. Nat Rev Cancer 17:577–593.  https://doi.org/10.1038/nrc.2017.77 CrossRefPubMedGoogle Scholar
  49. 49.
    Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677.  https://doi.org/10.1038/nrc3110 CrossRefPubMedGoogle Scholar
  50. 50.
    Murray CM, Hutchinson R, Bantick JR, Belfield GP, Benjamin AD, Brazma D, Bundick RV, Cook ID, Craggs RI, Edwards S, Evans LR, Harrison R, Holness E, Jackson AP, Jackson CG, Kingston LP, Perry MW, Ross AR, Rugman PA, Sidhu SS, Sullivan M, Taylor-Fishwick DA, Walker PC, Whitehead YM, Wilkinson DJ, Wright A, Donald DK (2005) Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol 1:371–376CrossRefGoogle Scholar
  51. 51.
    Boidot R, Vegran F, Meulle A, Le Breton A, Dessy C, Sonveaux P, Lizard-Nacol S, Feron O (2012) Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 72:939–948.  https://doi.org/10.1158/0008-5472.CAN-11-2474 CrossRefPubMedGoogle Scholar
  52. 52.
    Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618.  https://doi.org/10.1038/ncb1724 CrossRefPubMedGoogle Scholar
  53. 53.
    Hu X, Chao M, Wu H (2017) Central role of lactate and proton in cancer cell resistance to glucose deprivation and its clinical translation. Signal Transduct Target Ther 2:16047.  https://doi.org/10.1038/sigtrans.2016.47 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ryder C, McColl K, Zhong F, Distelhorst CW (2012) Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. J Biol Chem 287:27863–27875.  https://doi.org/10.1074/jbc.M112.384685 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J, Hu X (2012) Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 227:189–199.  https://doi.org/10.1002/path.3978 CrossRefPubMedGoogle Scholar
  56. 56.
    No YR, Lee SJ, Kumar A, Yun CC (2015) HIF1alpha-induced by lysophosphatidic acid is stabilized via interaction with MIF and CSN5. PLoS ONE 10:e0137513.  https://doi.org/10.1371/journal.pone.0137513 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490.  https://doi.org/10.1038/28867 CrossRefPubMedGoogle Scholar
  58. 58.
    Verduzco D, Lloyd M, Xu L, Ibrahim-Hashim A, Balagurunathan Y, Gatenby RA, Gillies RJ (2015) Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE 10:e0120958.  https://doi.org/10.1371/journal.pone.0120958 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY (2017) Hypoxia-inducible factors and cancer. Curr Sleep Med Rep 3:1–10.  https://doi.org/10.1007/s40675-017-0062-7 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56.  https://doi.org/10.1016/j.gde.2009.10.009 CrossRefPubMedGoogle Scholar
  61. 61.
    Lv B, Li F, Fang J, Xu L, Sun C, Han J, Hua T, Zhang Z, Feng Z, Jiang X (2017) Hypoxia inducible factor 1alpha promotes survival of mesenchymal stem cells under hypoxia. Am J Transl Res 9:1521–1529PubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhou CH, Zhang XP, Liu F, Wang W (2015) Modeling the interplay between the HIF-1 and p53 pathways in hypoxia. Sci Rep 5:13834.  https://doi.org/10.1038/srep13834 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J (2007) Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 282:1788–1796.  https://doi.org/10.1074/jbc.M607065200 CrossRefPubMedGoogle Scholar
  64. 64.
    Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14:34–44PubMedPubMedCentralGoogle Scholar
  65. 65.
    Trisciuoglio D, Gabellini C, Desideri M, Ziparo E, Zupi G, Del Bufalo D (2010) Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90. PLoS ONE 5:e11772.  https://doi.org/10.1371/journal.pone.0011772 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vishal Kumar Gupta
    • 1
  • Pradip Kumar Jaiswara
    • 1
  • Pratishtha Sonker
    • 1
  • Shiv Govind Rawat
    • 1
  • Rajan Kumar Tiwari
    • 1
  • Ajay Kumar
    • 1
    Email author
  1. 1.Department of Zoology, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations