Advertisement

Apoptosis

, Volume 24, Issue 7–8, pp 644–661 | Cite as

Berberine mitigates IL-21/IL-21R mediated autophagic influx in fibroblast-like synoviocytes and regulates Th17/Treg imbalance in rheumatoid arthritis

  • Palani Dinesh
  • MahaboobKhan RasoolEmail author
Article
  • 351 Downloads

Abstract

In our previous study, we explored the therapeutic effect of berberine (BBR) against IL-21/IL-21R mediated inflammatory proliferation of adjuvant-induced arthritic fibroblast-like synoviocytes (AA-FLS) through the PI3K/Akt pathway. The current study was designed to explore the therapeutic potential of BBR (15–45 µM) against IL-21/IL-21R mediated autophagy in AA-FLS mediated through PI3K/Akt signaling and Th17/Treg imbalance. Upon IL-21 stimulation, AA-FLS expressed elevated levels of autophagy-related 5 (Atg5), Beclin-1 and LC3-phosphatidylethanolamine conjugate 3-II (LC3-II) through the utilization of p62 and inhibition of C/EBP homologous protein (CHOP). BBR (15–45 µM) inhibited autophagy in AA-FLS cells mediated through PI3K/Akt signaling via suppressing autophagic elements, p62 sequestration and induction of CHOP in a dose-dependent manner. Moreover, IL-21 promoted the uncontrolled proliferation of AA-FLS through induction of B cell lymphoma-2 (Bcl-2) and diminished expression of Bcl-2 associated X protein (BAX) via PI3K/Akt signaling. BBR inhibited the proliferation of AA-FLS via promoting apoptosis through increased expression of BAX and diminished Bcl-2 transcription factor levels. Furthermore, T cells stimulated with IL-21 induced CD4+ CD196+ Th17 cells proliferation through RORγt activation mediated in a PI3K/Akt dependent manner. BBR inhibited the proliferation of Th17 cells through downregulation of RORγt in a concentration-dependent manner. BBR also promoted the differentiation of CD4+ CD25+ Treg cells through induction of forkhead box P3 (Foxp3) activation via aryl hydrocarbon receptor (AhR) and upregulation of cytochrome P450 family 1, subfamily A, polypeptide 1 (CYP1A1). Collectively, we conclude that BBR might attenuate AA-FLS proliferation through inhibition of IL-21/IL-21R dependent autophagy and regulates the Th17/Treg imbalance in RA.

Keywords

IL-21/IL-21R p62 RORγt Foxp3 AhR 

Notes

Acknowledgments

Palani Dinesh would like to thank Council of Scientific and Industrial Research (CSIR) for providing financial assistance in the form of Senior Research Fellowship (SRF), [Acknowledgment no: 112290/2K17/1; File no: 09/844(0059)/2018].

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Bordy R, Totoson P, Prati C et al (2018) Microvascular endothelial dysfunction in rheumatoid arthritis. Nat Rev Rheumatol 14:404–420.  https://doi.org/10.1038/s41584-018-0022-8 CrossRefGoogle Scholar
  2. 2.
    Weyand CM, Goronzy JJ (2017) Immunometabolism in early and late stages of rheumatoid arthritis. Nat Rev Rheumatol 13:291–301.  https://doi.org/10.1038/nrrheum.2017.49 CrossRefGoogle Scholar
  3. 3.
    Tu J, Hong W, Zhang P et al (2018) Ontology and function of fibroblast-like and macrophage-like synoviocytes: how do they talk to each other and can they Be targeted for rheumatoid arthritis therapy? Front Immunol 9:1467–1477.  https://doi.org/10.3389/fimmu.2018.01467 CrossRefGoogle Scholar
  4. 4.
    Buckley CD, McGettrick HM (2018) Leukocyte trafficking between stromal compartments: lessons from rheumatoid arthritis. Nat Rev Rheumatol 14:476–487.  https://doi.org/10.1038/s41584-018-0042-4 CrossRefGoogle Scholar
  5. 5.
    Shikhagaie MM, Germar K, Bal SM et al (2017) Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases. Nat Rev Rheumatol 13:164–173.  https://doi.org/10.1038/nrrheum.2016.218 CrossRefGoogle Scholar
  6. 6.
    Chen Z, Bozec A, Ramming A, Schett G (2019) Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 15:9–17.  https://doi.org/10.1038/s41584-018-0109-2 CrossRefGoogle Scholar
  7. 7.
    Falconer J, Murphy AN, Young SP et al (2018) Synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ) 70:984–999.  https://doi.org/10.1002/art.40504 CrossRefGoogle Scholar
  8. 8.
    Dinesh P, Rasool M (2018) Berberine inhibits IL-21/IL-21R mediated inflammatory proliferation of fibroblast-like synoviocytes through the attenuation of PI3K/Akt signaling pathway and ameliorates IL-21 mediated osteoclastogenesis. Cytokine 106:54–66.  https://doi.org/10.1016/j.cyto.2018.03.005 CrossRefGoogle Scholar
  9. 9.
    Varricchi G, Harker J, Borriello F et al (2016) T follicular helper (Tfh) cells in normal immune responses and in allergic disorders. Allergy 71:1086–1094.  https://doi.org/10.1111/all.12878 CrossRefGoogle Scholar
  10. 10.
    Diehl SA, Schmidlin H, Nagasawa M et al (2012) IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunol Cell Biol 90:802–811.  https://doi.org/10.1038/icb.2012.17 CrossRefGoogle Scholar
  11. 11.
    Rao DA, Gurish MF, Marshall JL et al (2017) Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542:110–114CrossRefGoogle Scholar
  12. 12.
    Niu X, He D, Zhang X et al (2010) IL-21 regulates Th17 cells in rheumatoid arthritis. Hum Immunol 71:334–341.  https://doi.org/10.1016/j.humimm.2010.01.010 CrossRefGoogle Scholar
  13. 13.
    Sakuraba K, Oyamada A, Fujimura K et al (2016) Interleukin-21 signaling in B cells, but not in T cells, is indispensable for the development of collagen-induced arthritis in mice. Arthritis Res Ther 18:1–10.  https://doi.org/10.1186/s13075-016-1086-y CrossRefGoogle Scholar
  14. 14.
    Xing R, Jin Y, Sun L et al (2016) Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin Exp Immunol 184:147–158.  https://doi.org/10.1111/cei.12751 CrossRefGoogle Scholar
  15. 15.
    Roeleveld DM, Marijnissen RJ, Walgreen B et al (2017) Higher efficacy of anti-IL-6/IL-21 combination therapy compared to monotherapy in the induction phase of Th17-driven experimental arthritis. PLoS ONE 12:e0171757–e0171773.  https://doi.org/10.1371/journal.pone.0171757 CrossRefGoogle Scholar
  16. 16.
    Sanchez-Martin P, Komatsu M (2018) p62/SQSTM1—steering the cell through health and disease. J Cell Sci 131:21–34.  https://doi.org/10.1242/jcs.222836 CrossRefGoogle Scholar
  17. 17.
    Ye X, Zhou XJ, Zhang H (2018) Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol 9:2334–2349.  https://doi.org/10.3389/fimmu.2018.02334 CrossRefGoogle Scholar
  18. 18.
    Vomero M, Barbati C, Colasanti T et al (2018) Autophagy and rheumatoid arthritis: current knowledges and future perspectives. Front Immunol 9:1577–1587.  https://doi.org/10.3389/fimmu.2018.01577 CrossRefGoogle Scholar
  19. 19.
    Chen YM, Chang CY, Chen HH et al (2018) Association between autophagy and inflammation in patients with rheumatoid arthritis receiving biologic therapy. Arthritis Res Ther 20:268–279.  https://doi.org/10.1186/s13075-018-1763-0 CrossRefGoogle Scholar
  20. 20.
    Shin YJ, Han SH, Kim DS et al (2010) Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res Ther 12:R19–R30.  https://doi.org/10.1186/ar2921 CrossRefGoogle Scholar
  21. 21.
    Ireland JM, Unanue ER (2011) Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med 208:2625–2632.  https://doi.org/10.1084/jem.20110640 CrossRefGoogle Scholar
  22. 22.
    Xu K, Xu P, Yao JF et al (2013) Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm Res 62:229–237.  https://doi.org/10.1007/s00011-012-0572-1 CrossRefGoogle Scholar
  23. 23.
    Kato M, Ospelt C, Gay RE et al (2014) Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol (Hoboken, NJ) 66:40–48.  https://doi.org/10.1002/art.38190 CrossRefGoogle Scholar
  24. 24.
    Meng Q, Du X, Wang H et al (2017) Astragalus polysaccharides inhibits cell growth and pro-inflammatory response in IL-1beta-stimulated fibroblast-like synoviocytes by enhancement of autophagy via PI3K/AKT/mTOR inhibition. Apoptosis 22:1138–1146.  https://doi.org/10.1007/s10495-017-1387-x CrossRefGoogle Scholar
  25. 25.
    Connor AM, Mahomed N, Gandhi R et al (2012) TNFalpha modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 14:62–71.  https://doi.org/10.1186/ar3778 CrossRefGoogle Scholar
  26. 26.
    Kim EK, Kwon JE, Lee SY et al (2017) IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis 8:e2565–e2575.  https://doi.org/10.1038/cddis.2016.490 CrossRefGoogle Scholar
  27. 27.
    Chang L, Feng X, Gao W (2018) Proliferation of rheumatoid arthritis fibroblast-like synoviocytes is enhanced by IL-17-mediated autophagy through STAT3 activation. Connect Tissue Res.  https://doi.org/10.1080/03008207.2018.1552266 Google Scholar
  28. 28.
    Feng FB, Qiu HY (2018) Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed Pharmacother 102:1209–1220.  https://doi.org/10.1016/j.biopha.2018.03.142 CrossRefGoogle Scholar
  29. 29.
    Hernandez-Palma LA, Garcia-Arellano S, Bucala R et al (2018) Functional MIF promoter haplotypes modulate Th17-related cytokine expression in peripheral blood mononuclear cells from control subjects and rheumatoid arthritis patients. Cytokine 115:89–96.  https://doi.org/10.1016/j.cyto.2018.11.014 CrossRefGoogle Scholar
  30. 30.
    Marijnissen RJ, Roeleveld DM, Young D et al (2014) Interleukin-21 receptor deficiency increases the initial toll-like receptor 2 response but protects against joint pathology by reducing Th1 and Th17 cells during streptococcal cell wall arthritis. Arthritis Rheumatol 66:886–895.  https://doi.org/10.1002/art.38312 CrossRefGoogle Scholar
  31. 31.
    Pfeifle R, Rothe T, Ipseiz N et al (2017) Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol 18:104–113.  https://doi.org/10.1038/ni.3579 CrossRefGoogle Scholar
  32. 32.
    Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517.  https://doi.org/10.1146/annurev.immunol.021908.132710 CrossRefGoogle Scholar
  33. 33.
    Rasmussen TK, Andersen T, Hvid M et al (2010) Increased interleukin 21 (IL-21) and IL-23 are associated with increased disease activity and with radiographic status in patients with early rheumatoid arthritis. J Rheumatol 37:2014–2020.  https://doi.org/10.3899/jrheum.100259 CrossRefGoogle Scholar
  34. 34.
    Kondo Y, Yokosawa M, Kaneko S et al (2018) Review: transcriptional regulation of CD4+ T cell differentiation in experimentally induced arthritis and rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ) 70:653–661.  https://doi.org/10.1002/art.40398 CrossRefGoogle Scholar
  35. 35.
    Tong B, Yuan X, Dou Y et al (2016) Norisoboldine, an isoquinoline alkaloid, acts as an aryl hydrocarbon receptor ligand to induce intestinal Treg cells and thereby attenuate arthritis. Int J Biochem Cell Biol 75:63–73.  https://doi.org/10.1016/j.biocel.2016.03.014 CrossRefGoogle Scholar
  36. 36.
    Nikiphorou E, Buch MH, Hyrich KL (2017) Biologics registers in RA: methodological aspects, current role and future applications. Nat Rev Rheumatol 13:503–510.  https://doi.org/10.1038/nrrheum.2017.81 CrossRefGoogle Scholar
  37. 37.
    Zhang X, Zhao Y, Xu J et al (2015) Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep 5:14405–14415.  https://doi.org/10.1038/srep14405 CrossRefGoogle Scholar
  38. 38.
    Pozsgay J, Szekanecz Z, Sarmay G (2017) Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 13:525–537.  https://doi.org/10.1038/nrrheum.2017.107 CrossRefGoogle Scholar
  39. 39.
    Wang Z, Chen Z, Yang S et al (2014) Berberine ameliorates collagen-induced arthritis in rats associated with anti-inflammatory and anti-angiogenic effects. Inflammation 37:1789–1798.  https://doi.org/10.1007/s10753-014-9909-y CrossRefGoogle Scholar
  40. 40.
    Wang X, He X, Zhang CF et al (2017) Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats. Biomed Pharmacother 89:887–893.  https://doi.org/10.1016/j.biopha.2017.02.099 CrossRefGoogle Scholar
  41. 41.
    Deng Y, Xu J, Zhang X et al (2014) Berberine attenuates autophagy in adipocytes by targeting BECN1. Autophagy 10:1776–1786.  https://doi.org/10.4161/auto.29746 CrossRefGoogle Scholar
  42. 42.
    Tong B, Yuan X, Dou Y et al (2016) Sinomenine induces the generation of intestinal Treg cells and attenuates arthritis via activation of aryl hydrocarbon receptor. Lab Invest 96:1076–1086.  https://doi.org/10.1038/labinvest.2016.86 CrossRefGoogle Scholar
  43. 43.
    Yue M, Xia Y, Shi C et al (2017) Berberine ameliorates collagen-induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut. FEBS J 284:2786–2801.  https://doi.org/10.1111/febs.14147 CrossRefGoogle Scholar
  44. 44.
    Li R, Cai L, Tang W et al (2016) Apoptotic effect of geniposide on fibroblast-like synoviocytes in rats with adjuvant-induced arthritis via inhibiting ERK signal pathway in vitro. Inflammation 39:30–38.  https://doi.org/10.1007/s10753-015-0219-9 CrossRefGoogle Scholar
  45. 45.
    Crowley T, O’Neil JD, Adams H et al (2017) Priming in response to pro-inflammatory cytokines is a feature of adult synovial but not dermal fibroblasts. Arthritis Res Ther 19:35–46.  https://doi.org/10.1186/s13075-017-1248-6 CrossRefGoogle Scholar
  46. 46.
    McInnes IB, Schett G (2017) Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet (London, England) 389:2328–2337.  https://doi.org/10.1016/S0140-6736(17)31472-1 CrossRefGoogle Scholar
  47. 47.
    Burmester GR, Pope JE (2017) Novel treatment strategies in rheumatoid arthritis. Lancet (London, England) 389:2338–2348.  https://doi.org/10.1016/S0140-6736(17)31491-5 CrossRefGoogle Scholar
  48. 48.
    Yuan MJ, Wang T (2016) Advances of the interleukin-21 signaling pathway in immunity and angiogenesis. Biomed reports 5:3–6.  https://doi.org/10.3892/br.2016.665 CrossRefGoogle Scholar
  49. 49.
    Arbogast F, Gros F (2018) Lymphocyte autophagy in homeostasis, activation, and inflammatory diseases. Front Immunol 9:1801–1819.  https://doi.org/10.3389/fimmu.2018.01801 CrossRefGoogle Scholar
  50. 50.
    Lin NY, Beyer C, Giessl A et al (2013) Autophagy regulates TNFalpha-mediated joint destruction in experimental arthritis. Ann Rheum Dis 72:761–768.  https://doi.org/10.1136/annrheumdis-2012-201671 CrossRefGoogle Scholar
  51. 51.
    Yang Z, Fujii H, Mohan SV et al (2013) Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 210:2119–2134.  https://doi.org/10.1084/jem.20130252 CrossRefGoogle Scholar
  52. 52.
    Yin H, Wu H, Chen Y et al (2018) The therapeutic and pathogenic role of autophagy in autoimmune diseases. Front Immunol 9:1512–1523.  https://doi.org/10.3389/fimmu.2018.01512 CrossRefGoogle Scholar
  53. 53.
    DeSelm CJ, Miller BC, Zou W et al (2011) Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 21:966–974.  https://doi.org/10.1016/j.devcel.2011.08.016 CrossRefGoogle Scholar
  54. 54.
    Xu K, Cai Y, Lu S-M et al (2015) Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoid arthritis fibroblast-like synovial cells through high mobility group box chromosomal protein 1. Arthritis Res Ther 17:374–384.  https://doi.org/10.1186/s13075-015-0892-y CrossRefGoogle Scholar
  55. 55.
    Li S, Chen JW, Xie X et al (2017) Autophagy inhibitor regulates apoptosis and proliferation of synovial fibroblasts through the inhibition of PI3K/AKT pathway in collagen-induced arthritis rat model. Am J Transl Res 9:2065–2076Google Scholar
  56. 56.
    Yang R, Zhang Y, Wang L et al (2017) Increased autophagy in fibroblast-like synoviocytes leads to immune enhancement potential in rheumatoid arthritis. Oncotarget 8:15420–15430.  https://doi.org/10.18632/oncotarget.14331 Google Scholar
  57. 57.
    Wang X, Jiang S, Sun Q (2011) Effects of berberine on human rheumatoid arthritis fibroblast-like synoviocytes. Exp Biol Med (Maywood) 236:859–866.  https://doi.org/10.1258/ebm.2011.010366 CrossRefGoogle Scholar
  58. 58.
    Wang X, Yang C, Xu F et al (2018) Imbalance of circulating Tfr/Tfh ratio in patients with rheumatoid arthritis. Clin Exp Med 19:55–64.  https://doi.org/10.1007/s10238-018-0530-5 CrossRefGoogle Scholar
  59. 59.
    Zhao C, Gu Y, Zeng X, Wang J (2018) NLRP3 inflammasome regulates Th17 differentiation in rheumatoid arthritis. Clin Immunol 197:154–160.  https://doi.org/10.1016/j.clim.2018.09.007 CrossRefGoogle Scholar
  60. 60.
    Kaneko S, Kondo Y, Yokosawa M et al (2018) The RORgammat-CCR60-CCL20 axis augments Th17 cells invasion into the synovia of rheumatoid arthritis patients. Mod Rheumatol 28:814–825.  https://doi.org/10.1080/14397595.2017.1416923 CrossRefGoogle Scholar
  61. 61.
    Chen W, Wang J, Xu Z et al (2018) Apremilast ameliorates experimental arthritis via suppression of Th1 and Th17 cells and enhancement of CD4(+)Foxp3(+) regulatory T cells differentiation. Front Immunol 9:1662–1672.  https://doi.org/10.3389/fimmu.2018.01662 CrossRefGoogle Scholar
  62. 62.
    Azizi G, Jadidi-Niaragh F, Mirshafiey A (2013) Th17 cells in immunopathogenesis and treatment of rheumatoid arthritis. Int J Rheum Dis 16:243–253.  https://doi.org/10.1111/1756-185X.12132 CrossRefGoogle Scholar
  63. 63.
    Cui H, Cai Y, Wang L et al (2018) Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon. Front Pharmacol 9:571–588.  https://doi.org/10.3389/fphar.2018.00571 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Immunopathology Lab, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia
  2. 2.SMV 240, Immunopathology Lab, School of Bio Sciences and TechnologyVITVelloreIndia

Personalised recommendations