Advertisement

Apoptosis

pp 1–9 | Cite as

Improved in vivo targeting of BCL-2 phenotypic conversion through hollow gold nanoshell delivery

  • Erin MorganEmail author
  • John T. Gamble
  • Martin C. Pearce
  • Daniel J. Elson
  • Robert L. Tanguay
  • Siva Kumar Kolluri
  • Norbert O. ReichEmail author
Article
  • 23 Downloads

Abstract

Although new cancer therapeutics are discovered at a rapid pace, lack of effective means of delivery and cancer chemoresistance thwart many of the promising therapeutics. We demonstrate a method that confronts both of these issues with the light-activated delivery of a Bcl-2 functional converting peptide, NuBCP-9, using hollow gold nanoshells. This approach has shown not only to increase the efficacy of the peptide 30-fold in vitro but also has shown to reduce paclitaxel resistant H460 lung xenograft tumor growth by 56.4%.

Keywords

Peptide delivery Bcl-2 Hollow gold nanoshells Apoptosis Resistant cancer NuBCP 

Notes

Acknowledgements

This work was supported by the National Institutes of Health (NIH) Grant R01 EB012637 and in part by Grants from the US Army Medical Research and Material Command (W81XWH-08-1-0600 and W81XWH-12-1-0069), American Cancer Society (RSG-13-132-01-CDD), National Institutes of Health (5RO1ES016651) and Oregon State University Venture Development Fund (http://advantage.oregonstate.edu/funding-opportunities). The authors thank support of the NRI Microscopy Center, the Olympus confocal microscope was funded by the NIH Grant 1S10RR022585-01A1. The authors thank A. Mikhailovsky for helpful conversations and aid of the UCSB Optical Characterization Facility. The ultrafast laser system was funded by DURIP ARO Grant 66886LSRIP. The authors would also like to thank former graduate student Demosthenes Morales for helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

10495_2019_1531_MOESM1_ESM.docx (347 kb)
Supplementary material 1 (DOCX 346 KB)

References

  1. 1.
    Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763CrossRefGoogle Scholar
  2. 2.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726CrossRefGoogle Scholar
  3. 3.
    Gupta D, Kumar M, Tyagi P, Kapoor S, Tyagi A, Barman TK et al (2018) Corrigendum to ‘Concomitant delivery of paclitaxel and NuBCP-9 peptide for synergistic enhancement of cancer therapy’ NANO 14 (2018) 1301–1313. Nanomed Nanotechnol Biol Med 14(7):2129CrossRefGoogle Scholar
  4. 4.
    Pearce MC, Gamble JT, Kopparapu PR, O’Donnell EF, Mueller MJ, Jang HS et al (2018) Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget.  https://doi.org/10.18632/oncotarget.25437 Google Scholar
  5. 5.
    Li H, Nelson CE, Evans BC, Duvall CL (2011) Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 17(3):293–319CrossRefGoogle Scholar
  6. 6.
    Hughes J, Rees S, Kalindjian S, Philpott K (2011) Principles of early drug discovery: principles of early drug discovery. Br J Pharmacol 162(6):1239–1249CrossRefGoogle Scholar
  7. 7.
    Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63CrossRefGoogle Scholar
  8. 8.
    Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27(50):6398–6406CrossRefGoogle Scholar
  9. 9.
    Bouchalova K, Svoboda M, Kharaishvili G, Vrbkova J, Bouchal J, Trojanec R et al (2015) BCL2 is an independent predictor of outcome in basal-like triple-negative breast cancers treated with adjuvant anthracycline-based chemotherapy. Tumour Biol J Int Soc Oncodev Biol Med 36(6):4243–4252CrossRefGoogle Scholar
  10. 10.
    Honma N, Horii R, Ito Y, Saji S, Younes M, Iwase T et al (2015) Differences in clinical importance of Bcl-2 in breast cancer according to hormone receptors status or adjuvant endocrine therapy. BMC Cancer 15(1):698CrossRefGoogle Scholar
  11. 11.
    Giuliano M, Hu H, Wang Y-C, Fu X, Nardone A, Herrera S et al (2015) Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy. Clin Cancer Res Off J Am Assoc Cancer Res 21(17):3995–4003CrossRefGoogle Scholar
  12. 12.
    Real PJ, Sierra A, De Juan A, Segovia JC, Lopez-Vega JM, Fernandez-Luna JL (2002) Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21(50):7611–7618CrossRefGoogle Scholar
  13. 13.
    Choudhary GS, Al-harbi S, Mazumder S, Hill BT, Smith MR, Bodo J et al (2015) MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis 6(1):e1593CrossRefGoogle Scholar
  14. 14.
    Yecies D, Carlson NE, Deng J, Letai A (2010) Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 115(16):3304–3313CrossRefGoogle Scholar
  15. 15.
    Lin B, Kolluri SK, Lin F, Liu W, Han Y-H, Cao X et al (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116(4):527–540CrossRefGoogle Scholar
  16. 16.
    Kolluri SK, Zhu X, Zhou X, Lin B, Chen Y, Sun K et al (2008) A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell 14(4):285–298CrossRefGoogle Scholar
  17. 17.
    Bodo J, Zhao X, Durkin L, Souers AJ, Phillips DC, Smith MR et al (2016) Acquired resistance to venetoclax (ABT-199) in positive lymphoma cells. Oncotarget 7(43):70000–70010CrossRefGoogle Scholar
  18. 18.
    Huang S, Jiang C, Guo H, Wang J, Liu Y, Li C, Lopez E, Zhang H, Lorence EA, Merolle M et al (2017) Resistance mechanisms underlying venetoclax resistance in mantle cell lymphoma. Blood 130(Suppl 1):2749Google Scholar
  19. 19.
    Kapoor S, Gupta D, Kumar M, Sharma S, Gupta AK, Misro MM et al (2016) Intracellular delivery of peptide cargos using polyhydroxybutyrate based biodegradable nanoparticles: studies on antitumor efficacy of BCL-2 converting peptide, NuBCP-9. Int J Pharm 511(2):876–889CrossRefGoogle Scholar
  20. 20.
    Kumar M, Gupta D, Singh G, Sharma S, Bhat M, Prashant CK et al (2014) Novel polymeric nanoparticles for intracellular delivery of peptide cargos: antitumor efficacy of the BCL-2 conversion peptide NuBCP-9. Cancer Res 74(12):3271–3281CrossRefGoogle Scholar
  21. 21.
    Kumar M, Singh G, Sharma S, Gupta D, Bansal V, Arora V et al (2014) Intracellular delivery of peptide cargos using iron oxide based nanoparticles: studies on antitumor efficacy of a BCL-2 converting peptide, NuBCP-9. Nanoscale 6(23):14473–14483CrossRefGoogle Scholar
  22. 22.
    Prevo B, Esakoff S, Mikhailovsky A, Zasadzinski J (2008) Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed laser irradiation. Small 4:1183–1195CrossRefGoogle Scholar
  23. 23.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310CrossRefGoogle Scholar
  24. 24.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRefGoogle Scholar
  25. 25.
    Wehmas LC, Tanguay RL, Punnoose A, Greenwood JA (2016) Developing a novel embryo–larval zebrafish xenograft assay to prioritize human glioblastoma therapeutics. Zebrafish 13:317–329CrossRefGoogle Scholar
  26. 26.
    Chakraborty C, Sharma AR, Sharma G, Lee S-S (2016) Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol.  https://doi.org/10.1186/s12951-016-0217-6 Google Scholar
  27. 27.
    Liu J, Liu Y, Bu W et al (2014) Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J Am Chem Soc 136:9701–9709CrossRefGoogle Scholar
  28. 28.
    Liu H-Y, Wu P-J, Kuo S-Y et al (2015) Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J Am Chem Soc 137:10420–10429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Erin Morgan
    • 1
    Email author
  • John T. Gamble
    • 2
  • Martin C. Pearce
    • 2
  • Daniel J. Elson
    • 2
  • Robert L. Tanguay
    • 2
    • 3
    • 4
  • Siva Kumar Kolluri
    • 2
    • 3
    • 4
  • Norbert O. Reich
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Environmental and Molecular ToxicologyOregon State UniversityCorvallisUSA
  3. 3.Linus Pauling InstituteOregon State UniversityCorvallisUSA
  4. 4.Center for Genome Research and BiocomputingOregon State UniversityCorvallisUSA

Personalised recommendations