Advertisement

Apoptosis

, Volume 24, Issue 1–2, pp 135–144 | Cite as

PPPDE1 promotes hepatocellular carcinoma development by negatively regulate p53 and apoptosis

  • Xingwang Xie
  • Xueyan Wang
  • Weijia Liao
  • Ran Fei
  • Nan Wu
  • Xu Cong
  • Qian Chen
  • Lai Wei
  • Yu WangEmail author
  • Hongsong ChenEmail author
Article

Abstract

We have previously identified that PPPDE1 is a deubiquitinase (DUB) belonging to a cysteine isopeptidase family. Here we sought to explore the biological significance of PPPDE1 in hepatocellular carcinoma and its underlying molecular mechanism. In the present study, we found that amplification and overexpression of PPPDE1 were associated with poor prognosis in hepatocellular carcinoma (HCC). We also demonstrated that knocking down of PPPDE1 could significantly block the clonal growth and tumorigenicity of human HCC cells, which revealed a critical role for PPPDE1 in HCC development. Furthermore, we proved that PPPDE1 is a key modulator of p53 protein level and its down stream apoptosis pathway. Taken together, these results suggested that PPPDE1 is a putative HCC driver gene and extensive studies should be conducted in the future to investigate the role of PPPDE1 in HCC and other tumors.

Keywords

PPPDE1 Hepatocellular carcinoma Driver gene p53 Apoptosis 

Abbreviations

DUBs

Deubiquitinating enzymes

PPPDE

After Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81201569, No. 81541151), the Beijing Natural Science Foundation (No. 7132186) and the National Key Sci-Tech Special Project of China (No. 2018ZX10302207, No. 2017ZX10203202).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

Supplementary material

10495_2018_1491_MOESM1_ESM.docx (92 kb)
Supplementary material 1 (DOCX 92 KB)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA 65:87–108Google Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  3. 3.
    Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687CrossRefGoogle Scholar
  4. 4.
    Cheng W, Su Y, Xu F (2013) CHD1L: a novel oncogene. Mol Cancer 12:170CrossRefGoogle Scholar
  5. 5.
    Liu L, Dai Y, Chen J et al (2014) Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3beta/Snail signaling. Hepatology 59:531–543CrossRefGoogle Scholar
  6. 6.
    Wang K, Lim HY, Shi S et al (2013) Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58:706–717CrossRefGoogle Scholar
  7. 7.
    Xie X, Wang X, Jiang D et al (2017) PPPDE1 is a novel deubiquitinase belonging to a cysteine isopeptidase family. Biochem Biophys Res Commun 488:291–296CrossRefGoogle Scholar
  8. 8.
    Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ (2007) The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA 104:8869–8874CrossRefGoogle Scholar
  9. 9.
    Nakada S, Tai I, Panier S et al (2010) Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466:941–946CrossRefGoogle Scholar
  10. 10.
    Schwickart M, Huang X, Lill JR et al (2010) Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463:103–107CrossRefGoogle Scholar
  11. 11.
    Singh N, Singh AB (2016) Deubiquitinases and cancer: a snapshot. Crit Rev Oncol Hematol 103:22–26CrossRefGoogle Scholar
  12. 12.
    Sippl W, Collura V, Colland F (2011) Ubiquitin-specific proteases as cancer drug targets. Future Oncol 7:619–632CrossRefGoogle Scholar
  13. 13.
    Devine T, Dai MS (2013) Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des 19:3248–3262CrossRefGoogle Scholar
  14. 14.
    Lim KH, Baek KH (2013) Deubiquitinating enzymes as therapeutic targets in cancer. Curr Pharm Des 19:4039–4052CrossRefGoogle Scholar
  15. 15.
    Nanduri B, Suvarnapunya AE, Venkatesan M, Edelmann MJ (2013) Deubiquitinating enzymes as promising drug targets for infectious diseases. Curr Pharm Des 19:3234–3247CrossRefGoogle Scholar
  16. 16.
    Robinson JT, Thorvaldsdottir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRefGoogle Scholar
  17. 17.
    Campeau E, Ruhl VE, Rodier F et al (2009) A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4:e6529CrossRefGoogle Scholar
  18. 18.
    Warner JR, McIntosh KB (2009) How common are extraribosomal functions of ribosomal proteins? Mol Cell 34:3–11CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16:369–377CrossRefGoogle Scholar
  20. 20.
    Chen D, Zhang Z, Li M et al (2007) Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 26:5029–5037CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Poyurovsky MV, Li Y et al (2009) Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 35:316–326CrossRefGoogle Scholar
  22. 22.
    Wu CT, Lin TY, Hsu HY, Sheu F, Ho CM, Chen EI (2011) Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis 32:1890–1896CrossRefGoogle Scholar
  23. 23.
    Zhang W, Tong D, Liu F et al (2016) RPS7 inhibits colorectal cancer growth via decreasing HIF-1alpha-mediated glycolysis. Oncotarget 7:5800–5814Google Scholar
  24. 24.
    Wang Z, Hou J, Lu L et al (2013) Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS ONE 8:e79117CrossRefGoogle Scholar
  25. 25.
    Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758CrossRefGoogle Scholar
  26. 26.
    Fujimoto A, Furuta M, Totoki Y et al (2016) Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet 48:500–509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xingwang Xie
    • 1
    • 2
  • Xueyan Wang
    • 2
  • Weijia Liao
    • 3
  • Ran Fei
    • 2
  • Nan Wu
    • 2
  • Xu Cong
    • 2
  • Qian Chen
    • 3
  • Lai Wei
    • 2
  • Yu Wang
    • 1
    Email author
  • Hongsong Chen
    • 2
    Email author
  1. 1.Chinese Center for Disease Control and PreventionBeijingChina
  2. 2.Peking University People’s Hospital, Peking University Hepatology InstituteBeijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseaseBeijingChina
  3. 3.Laboratory of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Guilin Medical UniversityGuilinChina

Personalised recommendations