, Volume 23, Issue 7–8, pp 377–387 | Cite as

Gastrointestinal microecology: a crucial and potential target in acute pancreatitis

  • Meng-Er Cen
  • Feng Wang
  • Ying Su
  • Wang-Jun Zhang
  • Bei Sun
  • Gang WangEmail author


In the early stage of acute pancreatitis (AP), abundant cytokines induced by local pancreatic inflammation enter the bloodstream, further cause systemic inflammatory response syndrome (SIRS) by “trigger effect”, which eventually leads to multiple organ dysfunction syndrome (MODS). During SIRS and MODS, the intestinal barrier function was seriously damaged accompanied by the occurrence of gut-derived infection which forms a “second hit summit” by inflammatory overabundance. Gastrointestinal microecology, namely the biologic barrier, could be transformed into a pathogenic state, which is called microflora dysbiosis when interfered by the inflammatory stress during AP. More and more evidences indicate that gastrointestinal microflora dysbiosis plays a key role in “the second hit” induced by AP gut-derived infection. Therefore, the maintenance of gastrointestinal microecology balance is likely to provide an effective method in modulating systemic infection of AP. This article reviewed the progress of gastrointestinal microecology in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.


Acute pancreatitis Gastrointestinal microecology Intestinal barrier Systemic inflammatory response syndrome Enteral nutrition 



Acute pancreatitis


Systemic inflammatory response syndrome


Multiple organ dysfunction syndrome


Severe acute pancreatitis




Pancreatitis-associated ascitic fluid


Proton pump inhibitor


Mild acute pancreatitis


Enteral nutrition


Selective decontaminant of digestive tract


Fecal microbiota transplantation



This study was funded by the National Nature Scientific Foundation of China (Nos: 81100314, 81370565, 81770639), Nature Scientific Foundation of Heilongjiang Province (No: H201445), Wei-Han Yu scientific foundation of Harbin Medical University.

Authors contribution

M-EC, FW, and YS reviewed the current literature and drafted the main part of the manuscript. W-JZ, and BS edited the manuscript and contributed by iteratively reviewing and improving the manuscript. GW edited the manuscript, gave oversight to draft the manuscript, and made substantive intellectual contributions and improvements. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Tenner S, Baillie J, Dewitt J, Vege SS, American College of Gastroenterology (2013) American college of gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol 108:1400–1415CrossRefPubMedGoogle Scholar
  2. 2.
    Thomson JT, Brand MB, FruFonteh P (2017) The role of IL17-a in the second hit of acute pancreatitis. S Afr J Surg 55:51PubMedGoogle Scholar
  3. 3.
    Arlt A, Erhart W, Schafmayer C, Held HC, Hampe J (2014) Antibiosis of necrotizing pancreatitis. Viszeralmedizin 30:318–324CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gulbinas A, Pundzius J, Barauskas G (2007) Meta-analysis of prophylactic parenteral antibiotic use in acute necrotizing pancreatitis. Medicina 43:291–300CrossRefPubMedGoogle Scholar
  5. 5.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267CrossRefPubMedGoogle Scholar
  6. 6.
    Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S et al (2012) Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med 4:137rv6CrossRefPubMedGoogle Scholar
  7. 7.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC (2015) Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37:984–995CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gordon JI, Dewey KG, Mills DA, Medzhitov RM (2012) The human gut microbiota and undernutrition. Sci Transl Med 4:137ps12CrossRefPubMedGoogle Scholar
  10. 10.
    Ericsson AC, Franklin CL (2015) Manipulating the gut microbiota: methods and challenges. ILAR J 56:205–217CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chung H, Kasper DL (2010) Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol 22:455–460CrossRefPubMedGoogle Scholar
  12. 12.
    Eshraghian A, Eshraghian H (2011) Interstitial cells of Cajal: a novel hypothesis for the pathophysiology of irritable bowel syndrome. Can J Gastroenterol 25:277–279CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang X, Gong Z, Wu K, Wang B, Yuang Y (2003) Gastrointestinal dysmotility in patients with acute pancreatitis. J Gastroenterol Hepatol 18:57–62CrossRefPubMedGoogle Scholar
  14. 14.
    Sawa H, Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Matsumura N et al (2008) Expression of toll-like receptor 2 and 4 in intestinal mucosa in experimental severe acute pancreatitis. Hepatogastroenterology 55:2247–2251PubMedGoogle Scholar
  15. 15.
    Van Felius ID, Akkermans LM, Bosscha K, Verheem A, Harmsen W, Visser MR et al (2003) Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol Motil 15:267–276CrossRefPubMedGoogle Scholar
  16. 16.
    Camargo EA, Santana DG, Silva CI, Teixeira SA, Toyama MH, Cotrim C et al (2014) Inhibition of inducible nitric oxide synthase-derived nitric oxide as a therapeutical target for acute pancreatitis induced by secretory phospholipase A2. Eur J Pain 18:691–700CrossRefPubMedGoogle Scholar
  17. 17.
    Tian R, Tan JT, Wang RL, Xie H, Qian YB, Yu KL (2013) The role of intestinal mucosa oxidative stress in gut barrier dysfunction of severe acute pancreatitis. Eur Rev Med Pharmacol Sci 17:349–355PubMedGoogle Scholar
  18. 18.
    Booth DM, Murphy JA, Mukherjee R, Awais M, Neoptolemos JP, Gerasimenko OV et al (2011) Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology 140:2116–2125CrossRefPubMedGoogle Scholar
  19. 19.
    Wang G, Qu FZ, Li L, Lv JC, Sun B (2016) Necroptosis: a potential, promising target and switch in acute pancreatitis. Apoptosis 21:121–129CrossRefPubMedGoogle Scholar
  20. 20.
    Deng WS, Zhang J, Ju H, Zheng HM, Wang J, Wang S et al (2015) Arpin contributes to bacterial translocation and development of severe acute pancreatitis. World J Gastroenterol 21:4293–4301CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gutierrez PT, Folch-Puy E, Bulbena O, Closa D (2008) Oxidised lipids present in ascitic fluid interfere with the regulation of the macrophages during acute pancreatitis, promoting an exacerbation of the inflammatory response. Gut 57:642–648CrossRefPubMedGoogle Scholar
  22. 22.
    Sugimoto M, Takada T, Yasuda H, Nagashima I, Amano H, Yoshida M et al (2006) The lethal toxicity of pancreatic ascites fluid in severe acute necrotizing pancreatitis. Hepatogastroenterology 53:442–446PubMedGoogle Scholar
  23. 23.
    Han T, Li XL, Cai DL, Zhong Y, Geng SS (2013) Effects of glutamine-supplemented enteral or parenteral nutrition on apoptosis of intestinal mucosal cells in rats with severe acute pancreatitis. Eur Rev Med Pharmacol Sci 17:1529–1535PubMedGoogle Scholar
  24. 24.
    Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Sawa H, Nakajima T et al (2006) Immunosuppression in patients with severe acute pancreatitis. J Gastroenterol 41:779–784CrossRefPubMedGoogle Scholar
  25. 25.
    Beger HG, Rau BM (2007) Severe acute pancreatitis: clinical course and management. World J Gastroenterol 13:5043–5051CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li Q, Wang C, Tang C, He Q, Li N, Li J (2013) Bacteremia in patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques. Crit Care Med 41:1938–1950CrossRefPubMedGoogle Scholar
  27. 27.
    Noor MT, Radhakrishna Y, Kochhar R, Ray P, Wig JD, Sinha SK et al (2011) Bacteriology of infection in severe acute pancreatitis. JOP 12:19–25PubMedGoogle Scholar
  28. 28.
    Wu ZW, Ling ZX, Lu HF, Zuo J, Sheng JF, Zheng SS et al (2012) Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreat Dis Int 11:40–50CrossRefPubMedGoogle Scholar
  29. 29.
    Tan C, Ling Z, Huang Y, Cao Y, Liu Q, Cai T et al (2015) Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas 44:868–875CrossRefPubMedGoogle Scholar
  30. 30.
    Qin HL, Zheng JJ, Tong DN, Chen WX, Fan XB, Hang XM et al (2008) Effect of Lactobacillus plantarum enteral feeding on the gut permeability and septic complications in the patients with acute pancreatitis. Eur J Clin Nutr 62:923–930CrossRefPubMedGoogle Scholar
  31. 31.
    Andrade ME, Araújo RS, de Barros PA, Soares AD, Abrantes FA, de Generoso SV, et al (2015) The role of immunomodulators on intestinal barrier homeostasis in experimental models. Clin Nutr 34:1080–1087CrossRefPubMedGoogle Scholar
  32. 32.
    García-Trevijano ER, Iraburu MJ, Fontana L, Domínguez-Rosales JA, Auster A, Covarrubias-Pinedo A et al (1999) Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells. Hepatology 29:960–970CrossRefPubMedGoogle Scholar
  33. 33.
    Lee KM, Paik CN, Chung WC, Yang JM (2011) Association between acute pancreatitis and peptic ulcer disease. World J Gastroenterol 17:1058–1062PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zerem E (2014) Treatment of severe acute pancreatitis and its complications. World J Gastroenterol 20:13879–13892CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Oláh A, Romics L (2014) Enteral nutrition in acute pancreatitis: a review of the current evidence. World J Gastroenterol 20:16123–16131CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Petrov MS (2013) Moving beyond the “pancreatic rest” in severe and critical acute pancreatitis. Crit Care 17:161CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tiihonen K, Ouwehand AC, Rautonen N (2010) Effect of overweight on gastrointestinal microbiology and immunology: correlation with blood biomarkers. Br J Nutr 103:1070–1078CrossRefPubMedGoogle Scholar
  38. 38.
    Wernerman J (2008) Role of glutamine supplementation in critically ill patients. Curr Opin Anaesthesiol 21:155–159CrossRefPubMedGoogle Scholar
  39. 39.
    Cruz-Santamaría DM, Taxonera C, Giner M (2012) Update on pathogenesis and clinical management of acute pancreatitis. World J Gastrointest Pathophysiol 3:60–70CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rychter JW, van Minnen LP, Verheem A, Timmerman HM, Rijkers GT, Schipper ME et al (2009) Pretreatment but not treatment with probiotics abolishes mouse intestinal barrier dysfunction in acute pancreatitis. Surgery 145:157–167CrossRefPubMedGoogle Scholar
  41. 41.
    De Waele JJ, Rello J, Anzueto A, Moreno R, Lipman J, Sakr Y et al (2014) Infections and use of antibiotics in patients admitted for severe acute pancreatitis: data from the EPIC II study. Surg Infect 15:394–398CrossRefGoogle Scholar
  42. 42.
    Wittau M, Mayer B, Scheele J, Henne-Bruns D, Dellinger EP, Isenmann R (2011) Systematic review and meta-analysis of antibiotic prophylaxis in severe acute pancreatitis. Scand J Gastroenterol 46:261–270CrossRefPubMedGoogle Scholar
  43. 43.
    Quévrain E, Maubert MA, Sokol H, Devreese B, Seksik P (2016) The presence of the anti-inflammatory protein MAM, from Faecalibacterium prausnitzii, in the intestinal ecosystem. Gut 65:882PubMedGoogle Scholar
  44. 44.
    Carlsson AH, Yakymenko O, Olivier I, Hakansson F, Postma E, Keita AV et al (2013) Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol 48:1136–1144CrossRefPubMedGoogle Scholar
  45. 45.
    Bergmann KR, Liu SX, Tian R, Kushnir A, Turner JR, Li HL et al (2013) Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol 182:1596–1606CrossRefGoogle Scholar
  46. 46.
    Ogura E, Matsuyama M, Goto TK, Nakamura Y, Koyano K (2012) Brain activation during oral exercises used for dysphagia rehabilitation in healthy human subjects: a functional magnetic resonance imaging study. Dysphagia 27:353–360CrossRefPubMedGoogle Scholar
  47. 47.
    Lutgendorff F, Trulsson LM, van Minnen LP, Rijkers GT, Timmerman HM, Franzen LE et al (2008) Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 295:G1111–G1121CrossRefPubMedGoogle Scholar
  48. 48.
    Lutgendorff F, Nijmeijer RM, Sandström PA, Trulsson LM, Magnusson KE, Timmerman HM et al (2009) Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis. PLoS ONE 4:e4512CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Van Minnen LP, Timmerman HM, Lutgendorff F, Verheem A, Harmsen W, Konstantinov SR et al (2007) Modification of intestinal flora with multispecies probiotics reduces bacterial translocation and improves clinical course in a rat model of acute pancreatitis. Surgery 141:470–480CrossRefPubMedGoogle Scholar
  50. 50.
    Muftuoglu MA, Isikgor S, Tosun S, Saglam A (2006) Effects of probiotics on the severity of experimental acute pancreatitis. Eur J Clin Nutr 60:464–468CrossRefPubMedGoogle Scholar
  51. 51.
    Hooijmans CR, de Vries RBM, Rovers MM, Gooszen HG, Ritskes-Hoitinga M (2012) The effects of probiotic supplementation on experimental acute pancreatitis: a systematic review and meta-analysis. PLoS ONE 7:e48811CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 53:4628–4639CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Oláh A, Belágyi T, Issekutz A, Gamal ME, Bengmark S (2002) Randomized clinical trial of specific lactobacillus and fibre supplement to early enteral nutrition in patients with acute pancreatitis. Br J Surg 89:1103–1107CrossRefPubMedGoogle Scholar
  54. 54.
    Oláh A, Belágyi T, Pótó L, Romics L, Bengmark S (2007) Synbiotic control of inflammation and infection in severe acute pancreatitis: a prospective, randomized, double blind study. Hepatogastroenterology 54:590–594PubMedGoogle Scholar
  55. 55.
    Karakan T, Ergun M, Dogan I, Cindoruk M, Unal S (2007) Comparison of early enteral nutrition in severe acute pancreatitis with prebiotic fiber supplementation versus standard enteral solution: a prospective randomized double-blind study. World J Gastroenterol 13:2733–2737CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM et al (2008) Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371:651–659CrossRefPubMedGoogle Scholar
  57. 57.
    Van Baal MC, Van Rens MJ, Geven CB, Van De Pol FM, Van Den Brink IW, Hannink G et al (2014) Association between probiotics and enteral nutrition in an experimental acute pancreatitis model in rats. Pancreatology 14:470–477CrossRefPubMedGoogle Scholar
  58. 58.
    Working Group IAP/APA Acute Pancreatitis Guidelines (2013) IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 13:e1–e15CrossRefGoogle Scholar
  59. 59.
    Capurso G, Zerboni G, Signoretti M, Valente R, Stigliano S, Piciucchi M et al (2012) Role of the gut barrier in acute pancreatitis. J Clin Gastroenterol 46:S46–S51CrossRefPubMedGoogle Scholar
  60. 60.
    Fujimori S, Sakamoto C (2013) Latest concepts on the association between nonsteroidal anti-inflammatory drug-induced small intestinal injury and intestinal bacterial flora. Clin J Gastroenterol 6:345–351CrossRefPubMedGoogle Scholar
  61. 61.
    Ramanan D, Bowcutt R, Lee SC, Tang MS, Kurtz ZD, Ding Y et al (2016) Helminth infection promotes colonization resistance via type 2 immunity. Science 352:608–612CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Croese J, Giacomin P, Navarro S, Clouston A, McCann L, Dougall A et al (2015) Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol 135:508–516CrossRefPubMedGoogle Scholar
  63. 63.
    Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K et al (2015) The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 43:998–1010CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340CrossRefGoogle Scholar
  65. 65.
    Wang G, Sun B, Gao Y, Meng QH, Jiang HC (2007) The effect of emodin-assisted early enteral nutrition on severe acute pancreatitis and secondary hepatic injury. Mediators Inflamm 2007:29638PubMedPubMedCentralGoogle Scholar
  66. 66.
    Wang G, Sun B, Zhu H, Gao Y, Li X, Xue D et al (2010) Protective effects of emodin combined with danshensu on experimental severe acute pancreatitis. Inflamm Res 59:479–488CrossRefPubMedGoogle Scholar
  67. 67.
    Ji L, Li L, Qu F, Zhang G, Wang Y, Bai X et al (2016) Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagy via AMPK/mTOR pathway. J Cell Mol Med 20:2349–2361CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang G, Han B, Zhou H, Wu L, Wang Y, Jia G et al (2013) Inhibition of hydrogen sulfide synthesis provides protection for severe acute pancreatitis rats via apoptosis pathway. Apoptosis 18:28–42CrossRefPubMedGoogle Scholar
  69. 69.
    Wang G, Iv JC, Wu LF, Li L, Dong DL, Sun B (2014) From nitric oxide to hyperbaric oxygen. Pancreas 43:511–517CrossRefPubMedGoogle Scholar
  70. 70.
    Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F et al (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci 107:7503–7508CrossRefPubMedGoogle Scholar
  71. 71.
    Brandt LJ, Aroniadis OC, Mellow M, Kanatzar A, Kelly C, Park T et al (2012) Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent clostridium difficile infection. Am J Gastroenterol 107:1079–1087CrossRefPubMedGoogle Scholar
  72. 72.
    Widdison AL, Karanjia ND, Reber HA (1994) Routes of spread of pathogens into the pancreas in a feline model of acute pancreatitis. Gut 35:1306–1310CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Guo ZZ, Wang P, Yi ZH, Huang ZY, Tang CW (2014) The crosstalk between gut inflammation and gastrointestinal disorders during acute pancreatitis. Curr Pharm Des 20:1051–1062CrossRefPubMedGoogle Scholar
  74. 74.
    Fritz S, Hackert T, Hartwig W, Rossmanith F, Strobel O, Schneider L et al (2010) Bacterial translocation and infected pancreatic necrosis in acute necrotizing pancreatitis derives from small bowel rather than from colon. Am J Surg 200:111–117CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
  2. 2.Kidney Disease CenterThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
  3. 3.Key Laboratory of NephropathyHangzhouChina
  4. 4.Department of OphthalmologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina

Personalised recommendations