Advertisement

Apoptosis

, Volume 23, Issue 7–8, pp 388–395 | Cite as

Treating metastatic prostate cancer with microRNA-145

  • Alexandre Iscaife
  • Sabrina Thalita Reis
  • Denis Reis Morais
  • Nayara Izabel Viana
  • Iran Amorim da Silva
  • Ruan Pimenta
  • Andre Bordini
  • Nelson Dip
  • Miguel Srougi
  • Katia Ramos Moreira Leite
Article

Abstract

Prostate cancer (PCa) is an incurable disease at the metastatic stage. Although there are different options for treatment, the results are limited. MicroRNAs (miRNAs) are a group of small, noncoding, regulatory RNAs with important roles in regulating gene expression. miR-145 is reported to be a key tumor suppressor miRNA (tsmiR) that controls important oncogenes, such as MYC and RAS. In this study, in vitro studies were performed to show the control of MYC and RAS by miR-145. Flow cytometry was used to analyze cell proliferation and apoptosis. The efficacy of miR-145 in treating metastatic PCa was tested in nude mice using a model of bone metastasis promoted by intraventricular injection of PC-3MLuc-C6 cells. Tumor growth was evaluated by an in vivo bioluminescence system. After the full establishment of metastases on day 21, six animals were treated with three intravenous doses of miR-145 (on days 21, 24 and 27), and six were injected with scramble miRNA as controls. Compared to the controls, tumor growth was significantly reduced in animals receiving miR-145, most importantly on day 7 after the third and last dose of miRNA. After discontinuing the treatment, tumor growth resumed, becoming similar to the group of non-treated animals. A decrease in MYC and RAS expression was observed in all cell lines after treatment with miR-145, although statistical significance was achieved only in experiments with LNCaP and PC3 cell lines, with a decrease in 56% (p = 0.012) and 31% (p = 0.013) of RAS expression, respectively. Our results suggest that miR-145 is a potential molecule to be tested for treatment of metastatic, castration-resistant PCa.

Keywords

Prostate cancer Metastasis Therapy MicroRNA Molecular biology 

Notes

Acknowledgements

We thank Mara Sa Junqueira for support with the animals. We thank Cristina Massocco Sales Gomes and Rodrigo Tannura for technical support with cell cycle assays. We thank Hernandes Faustino Carvalho for important reagents. We thank Jose Pontes Junior and Marcia Kubrusly for the critical reading of this manuscript. This study was supported by São Paulo Research Foundation (FAPESP) grants #2012/21966-8 and #2013/07350-7.

Author contributions

AI: Designed and performed experiments, analyzed data, performed statistical analysis and participated in writing the manuscript. STR: Designed experiments and participated in writing the manuscript. DRM: Performed experiments. NIV: Performed experiments. IAS: Performed experiments. AB: Participated in writing the manuscript. ND: Designed experiments. MS: Designed experiments, analyzed data and participated in writing the manuscript. KRML: Designed experiments, analyzed data and participated in writing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    (NIH) NIoH (2015) http://www.cancer.gov 2015 [Available from: http://www.cancer.gov
  2. 2.
    Klotz L, Drachenberg D, Singal R, Aprikian A, Fradet Y, Kebabdjian M et al (2014) An open-label, phase 2 trial of bicalutamide dose escalation from 50 mg to 150 mg in men with CAB and castration resistance. A Canadian Urology Research Consortium Study. Prostate Cancer Prostatic Dis 17(4):320–324CrossRefPubMedGoogle Scholar
  3. 3.
    Penson DF, Armstrong AJ, Concepcion R, Agarwal N, Olsson C, Karsh L et al (2016) Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE trial. J Clin Oncol 34(18):2098–2106CrossRefGoogle Scholar
  4. 4.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139CrossRefPubMedGoogle Scholar
  5. 5.
    Lo UG, Yang D, Hsieh JT (2013) The role of microRNAs in prostate cancer progression. Transl Androl Urol 2(3):228–241PubMedPubMedCentralGoogle Scholar
  6. 6.
    Drusco A, Croce CM (2017) MicroRNAs and cancer: a long story for short RNAs. Adv Cancer Res 135:1–24CrossRefPubMedGoogle Scholar
  7. 7.
    Uchino K, Ochiya T, Takeshita F (2013) RNAi therapeutics and applications of microRNAs in cancer treatment. Jpn J Clin Oncol 43(6):596–607CrossRefPubMedGoogle Scholar
  8. 8.
    Melo SA, Kalluri R (2012) Molecular pathways: microRNAs as cancer therapeutics. Clin Cancer Res 18(16):4234–4239CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M et al (2008) The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 3(12):e4029CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K et al (2005) Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 102(34):12177–12182CrossRefPubMedGoogle Scholar
  11. 11.
    Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N et al (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18(1):181–187CrossRefPubMedGoogle Scholar
  12. 12.
    Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sanudo A et al (2011) Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol 29(3):265–269CrossRefPubMedGoogle Scholar
  13. 13.
    Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 223(2):102–115CrossRefPubMedGoogle Scholar
  14. 14.
    Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27(12):1788–1793CrossRefPubMedGoogle Scholar
  15. 15.
    Schaefer A, Stephan C, Busch J, Yousef GM, Jung K (2010) Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol 7(5):286–297CrossRefPubMedGoogle Scholar
  16. 16.
    Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T et al (2012) MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 130(3):611–621CrossRefPubMedGoogle Scholar
  17. 17.
    Avgeris M, Stravodimos K, Fragoulis EG, Scorilas A (2013) The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Br J Cancer 108(12):2573–2581CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hart M, Wach S, Nolte E, Szczyrba J, Menon R, Taubert H et al (2013) The proto-oncogene ERG is a target of microRNA miR-145 in prostate cancer. FEBS J 280(9):2105–2116CrossRefPubMedGoogle Scholar
  19. 19.
    Patil PA, Magi-Galluzzi C (2015) MicroRNA in prostate cancer: practical aspects. Histol Histopathol 30(12):1379–1396PubMedGoogle Scholar
  20. 20.
    Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. New Engl J Med 358(2):140–151CrossRefPubMedGoogle Scholar
  21. 21.
    Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Camara-Lopes LH et al (2013) MicroRNA expression profiles in the progression of prostate cancer–from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol 31(6):796–801CrossRefPubMedGoogle Scholar
  22. 22.
    Leite KR, Reis ST, Viana N, Morais DR, Moura CM, Silva IA et al (2015) Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. J Cancer 6(3):292–301CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS ONE 6(3):e18067CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Oudard S, Vano Y (2015) The role of rechallenge with targeted therapies in metastatic renal-cell carcinoma. Curr Opin Urol 25(5):402–410CrossRefPubMedGoogle Scholar
  25. 25.
    Garcia M, Velez R, Romagosa C, Majem B, Pedrola N, Olivan M et al (2014) Cyclooxygenase-2 inhibitor suppresses tumour progression of prostate cancer bone metastases in nude mice. BJU Int 113(5b):E164–E177CrossRefGoogle Scholar
  26. 26.
    Tiacci E, Park JH, De Carolis L, Chung SS, Broccoli A, Scott S et al (2015) Targeting mutant BRAF in relapsed or refractory hairy-cell leukemia. New Engl J Med 373(18):1733–1747CrossRefPubMedGoogle Scholar
  27. 27.
    Wei EY, Hsieh JJ (2015) A river model to map convergent cancer evolution and guide therapy in RCC. Nat Rev Urol 12(12):706–712CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexandre Iscaife
    • 1
  • Sabrina Thalita Reis
    • 1
  • Denis Reis Morais
    • 1
  • Nayara Izabel Viana
    • 1
  • Iran Amorim da Silva
    • 1
  • Ruan Pimenta
    • 1
  • Andre Bordini
    • 1
  • Nelson Dip
    • 1
  • Miguel Srougi
    • 1
  • Katia Ramos Moreira Leite
    • 1
  1. 1.Laboratorio de Investigação Medica da Disciplina de Urologia – LIM 55, Faculdade de Medicina FMUSPUniversidade de Sao PauloSão PauloBrazil

Personalised recommendations