, Volume 22, Issue 11, pp 1380–1393 | Cite as

Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet β-cells: reversal of such metabolic defects by metformin

  • Sartaj Baidwan
  • Anil Chekuri
  • DiAnna L. Hynds
  • Anjaneyulu KowluruEmail author
Original Paper


Emerging evidence suggests that long-term exposure of insulin-secreting pancreatic β-cells to hyperglycemic (HG; glucotoxic) conditions promotes oxidative stress, which, in turn, leads to stress kinase activation, mitochondrial dysfunction, loss of nuclear structure and integrity and cell apoptosis. Original observations from our laboratory have proposed that Rac1 plays a key regulatory role in the generation of oxidative stress and downstream signaling events culminating in the onset of dysfunction of pancreatic β-cells under the duress of metabolic stress. However, precise molecular and cellular mechanisms underlying the metabolic roles of hyperactive Rac1 remain less understood. Using pharmacological and molecular biological approaches, we now report mistargetting of biologically-active Rac1 [GTP-bound conformation] to the nuclear compartment in clonal INS-1 cells, normal rat islets and human islets under HG conditions. Our findings also suggest that such a signaling step is independent of post-translational prenylation of Rac1. Evidence is also presented to highlight novel roles for sustained activation of Rac1 in HG-induced expression of Cluster of Differentiation 36 [CD36], a fatty acid transporter protein, which is implicated in cell apoptosis. Finally, our findings suggest that metformin, a biguanide anti-diabetic drug, at a clinically relevant concentration, prevents β-cell defects [Rac1 activation, nuclear association, CD36 expression, stress kinase and caspase-3 activation, and loss in metabolic viability] under the duress of glucotoxicity. Potential implications of these findings in the context of novel and direct regulation of islet β-cell function by metformin are discussed.


Pancreatic β-cells Glucotoxicity Stress kinases Rac1 CD36 and metformin 



AMP-activated protein kinase


ADP-ribosylation factor 6


Cleaved caspase-3


Cell division control protein 42


Cluster of differentiation36

ER stress

Endoplasmic reticulum stress


Guanine nucleotide exchange factors


Geranylgeranyl transferase


Geranylgeranyl transferase inhibitor


Glucose-stimulated insulin secretion


High glucose


Low glucose


3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


NADPH oxidase 2


p38 mitogen activated protein kinase


Ras-related C3 botulinum toxin substrate 1


Reactive oxygen species


Small (or short) interfering RNA


Type 2 diabetes mellitus


T-lymphoma invasion and metastasis-inducing protein 1



This work is conducted for the partial fulfillment of an MS degree in Pharmaceutical Sciences [to SB] from Wayne State University. The authors thank Drs. Jairus Reddy, Anil Poudel, Naveen Mekala, Vino Cheriyan and Ms. Gurbani Bedi for technical assistance in certain aspects of these studies.

Author Contributions

SB and AC conducted studies and analyzed the experimental data. DLH developed specific experimental tools, reviewed and edited the manuscript. AK planned and supervised studies, and wrote and edited the manuscript.


This research is supported [to AK] by a MERIT Review Award from the US Department of Veterans Affairs [BX002801] and the National Institutes of Health [DK-74921 and EY-022230]. AK also received a Senior Research Career Scientist Award [13S-RCS-006] from the Department of Veterans Affairs.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Berggren PO, Leibiger IB (2006) Novel aspects on signal-transduction in the pancreatic beta-cell. Nutr Metab Cardiovasc Dis 16(1):S7–S10CrossRefPubMedGoogle Scholar
  2. 2.
    Jitrapakdee S, Wutthisathapornchai A, Wallace JC, MacDonald MJ (2010) Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53(6):1019–1032CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Komatsu M, Takei M, Ishii H, Sato Y (2013) Glucose-stimulated insulin secretion: a newer perspective. J Diabetes Investig 4(6):511–516CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Prentki M, Matschinsky FM, Madiraju SR (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18(2):162–185. doi:  10.1016/j.cmet.2013.05.018 CrossRefPubMedGoogle Scholar
  5. 5.
    Kowluru A, Li G, Rabaglia ME, Segu VB, Hofmann F, Aktories K, Metz SA (1997) Evidence for differential roles of the Rho subfamily of GTP-binding proteins in glucose- and calcium-induced insulin secretion from pancreatic beta cell. Biochem Pharmacol 54(10):1097–1108CrossRefPubMedGoogle Scholar
  6. 6.
    Aizawa T, Komatsu M (2005) Rab27a: a new face in beta cell metabolism-secretion coupling. J Clin Invest 115(2):227–230PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang Z, Thurmond DC (2009) Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 122(Pt 7):893–903. doi: 10.1242/jcs.034355 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kowluru A (2010) Small G proteins in islet beta-cell function. Endocr Rev 31(1):52–78. doi: 10.1210/er.2009-0022 CrossRefPubMedGoogle Scholar
  9. 9.
    Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A (2011) Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 beta-cells and rat islets. Biochem Pharmacol 81(8):1016–1027. doi: 10.1016/j.bcp.2011.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Arora DK, Syed I, Machhadieh B, McKenna CE, Kowluru A (2012) Rab-geranylgeranyl transferase regulates glucose-stimulated insulin secretion from pancreatic beta cells. Islets 4(5):354–358. doi: 10.4161/isl.22538 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Syed I, Jayaram B, Subasinghe W, Kowluru A (2010) Tiam1/Rac1 signaling pathway mediates palmitate-induced, ceramide-sensitive generation of superoxides and lipid peroxides and the loss of mitochondrial membrane potential in pancreatic beta-cells. Biochem Pharmacol 80(6):874–883. doi: 10.1016/j.bcp.2010.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kowluru A (2011) Friendly, and not so friendly, roles of Rac1 in islet beta-cell function: lessons learnt from pharmacological and molecular biological approaches. Biochem Pharmacol 81(8):965–975. doi:  10.1016/j.bcp.2011.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Syed I, Kyathanahalli CN, Jayaram B, Govind S, Rhodes CJ, Kowluru RA, Kowluru A (2011) Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes 60(11):2843–2852. doi:  10.2337/db11-0809 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sidarala V, Veluthakal R, Syeda K, Vlaar C, Newsholme P, Kowluru A (2015) Phagocyte-like NADPH oxidase (Nox2) promotes activation of p38MAPK in pancreatic beta-cells under glucotoxic conditions: Evidence for a requisite role of Ras-related C3 botulinum toxin substrate 1 (Rac1). Biochem Pharmacol 95(4):301–310. doi:  10.1016/j.bcp.2015.04.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Kowluru A (2017) Tiam1/Vav2-Rac1 axis: A tug-of-war between islet function and dysfunction. Biochem Pharmacol 132:9–17. doi:  10.1016/j.bcp.2017.02.007 CrossRefPubMedGoogle Scholar
  16. 16.
    Sidarala V, Kowluru A (2017) Exposure to chronic hyperglycemic conditions results in Ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated activation of p53 and ATM kinase in pancreatic beta-cells. Apoptosis 22(5):597–607. doi: 10.1007/s10495-017-1354-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Robertson RP, Harmon J, Tran PO, Poitout V (2004) Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53(Suppl 1):S119-124Google Scholar
  18. 18.
    Subasinghe W, Syed I, Kowluru A (2011) Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic beta-cells: evidence for regulation by Rac1. Am J Physiol Regul Integr Comp Physiol 300(1):R12-20. doi:  10.1152/ajpregu.00421.2010 CrossRefPubMedGoogle Scholar
  19. 19.
    Elumalai S, Karunakaran U, Lee IK, Moon JS, Won KC (2017) Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells. Redox Biol 11:126–134. doi:  10.1016/j.redox.2016.11.009 CrossRefPubMedGoogle Scholar
  20. 20.
    Newsholme P, Morgan D, Rebelato E, Oliveira-Emilio HC, Procopio J, Curi R, Carpinelli A (2009) Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia 52(12):2489–2498. doi:  10.1007/s00125-009-1536-z CrossRefPubMedGoogle Scholar
  21. 21.
    Kowluru A, Kowluru RA (2014) Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochem Pharmacol 88(3):275–283. doi:  10.1016/j.bcp.2014.01.017 CrossRefPubMedGoogle Scholar
  22. 22.
    Veluthakal R, Arora DK, Goalstone ML, Kowluru RA, Kowluru A (2016) Metabolic stress induces caspase-3 mediated degradation and inactivation of farnesyl and geranylgeranyl transferase activities in pancreatic beta-cells. Cell Physiol Biochem 39(6):2110–2120CrossRefPubMedGoogle Scholar
  23. 23.
    Sreenan S, Sturis J, Pugh W, Burant CF, Polonsky KS (1996) Prevention of hyperglycemia in the Zucker diabetic fatty rat by treatment with metformin or troglitazone. Am J Physiol 271(4 Pt 1):E742-747Google Scholar
  24. 24.
    Lupi R, Del Guerra S, Tellini C, Giannarelli R, Coppelli A, Lorenzetti M, Carmellini M, Mosca F, Navalesi R, Marchetti P (1999) The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. Eur J Pharmacol 364(2–3):205–209CrossRefPubMedGoogle Scholar
  25. 25.
    Patane G, Piro S, Rabuazzo AM, Anello M, Vigneri R, Purrello F (2000) Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells. Diabetes 49(5):735–740CrossRefPubMedGoogle Scholar
  26. 26.
    Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G, Boggi U, Mosca F, Piro S, Del Prato S, Marchetti P (2002) Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes 51(Suppl 1):S134-137Google Scholar
  27. 27.
    Yang X, Xu Z, Zhang C, Cai Z, Zhang J (2016) Metformin, beyond an insulin sensitizer, targeting heart and pancreatic beta cells. Biochim Biophys Acta. doi:  10.1016/j.bbadis.2016.09.019 Google Scholar
  28. 28.
    Moon JS, Karunakaran U, Elumalai S, Lee IK, Lee HW, Kim YW, Won KC (2017) Metformin prevents glucotoxicity by alleviating oxidative and ER stress-induced CD36 expression in pancreatic beta cells. J Diabet Complicat 31(1):21–30. doi:  10.1016/j.jdiacomp.2016.09.001 CrossRefGoogle Scholar
  29. 29.
    Reddy JM, Samuel FG, McConnell JA, Reddy CP, Beck BW, Hynds DL (2015) Non-prenylatable, cytosolic Rac1 alters neurite outgrowth while retaining the ability to be activated. Cell Signal 27(3):630–637. doi:  10.1016/j.cellsig.2014.11.033 CrossRefPubMedGoogle Scholar
  30. 30.
    Syeda K, Mohammed AM, Arora DK, Kowluru A (2013) Glucotoxic conditions induce endoplasmic reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic beta-cells: protection by nifedipine. Biochem Pharmacol 86(9):1338–1346. doi:  10.1016/j.bcp.2013.08.023 CrossRefPubMedGoogle Scholar
  31. 31.
    Rahman A, Davis B, Lovdahl C, Hanumaiah VT, Feil R, Brakebusch C, Arner A (2014) The small GTPase Rac1 is required for smooth muscle contraction. J Physiol 592(5):915–926. doi:  10.1113/jphysiol.2013.262998 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sidarala V, Veluthakal R, Syeda K, Kowluru A (2015) EHT 1864, a small molecule inhibitor of Ras-related C3 botulinum toxin substrate 1 (Rac1), attenuates glucose-stimulated insulin secretion in pancreatic beta-cells. Cell Signal 27(6):1159–1167. doi:  10.1016/j.cellsig.2015.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Khan OM, Ibrahim MX, Jonsson IM, Karlsson C, Liu M, Sjogren AK, Olofsson FJ, Brisslert M, Andersson S, Ohlsson C (2011) Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J Clin Invest 121(2):628–639. doi:  10.1172/JCI43758 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dunford JE, Rogers MJ, Ebetino FH, Phipps RJ, Coxon FP (2006) Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases. J Bone MIner Res 21(5):684–694CrossRefPubMedGoogle Scholar
  35. 35.
    Kowluru A (2017) Inappropriate movement of Rac1 contributes to glucotoxicity of the islet β-cell. Cell Cycle 16(15):1387–1388. doi: 10.1080/15384101 CrossRefPubMedGoogle Scholar
  36. 36.
    Simon-Szabo L, Kokas M, Mandl J, Keri G, Csala M (2014) Metformin attenuates palmitate-induced endoplasmic reticulum stress, serine phosphorylation of IRS-1 and apoptosis in rat insulinoma cells. PloS ONE 9(6):e97868. doi:  10.1371/journal.pone.0097868 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lundquist I, Mohammed Al-Amily I, Meidute Abaraviciene S, Salehi A (2016) Metformin ameliorates dysfunctional traits of glibenclamide- and glucose-induced insulin secretion by suppression of imposed overactivity of the islet nitric oxide synthase-NO system. PloS ONE 11(11):e0165668. doi:  10.1371/journal.pone.0165668 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hashemitabar M, Bahramzadeh S, Saremy S, Nejaddehbashi F (2015) Glucose plus metformin compared with glucose alone on beta-cell function in mouse pancreatic islets. Biomed Rep 3(5):721–725CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Natalicchio A, Biondi G, Marrano N, Labarbuta R, Tortosa F, Spagnuolo R, D’Oria R, Carchia E, Leonardini A, Cignarelli A (2016) Long-term exposure of pancreatic beta-cells to palmitate results in SREBP-1C-dependent decreases in GLP-1 receptor signaling via CREB and AKT and insulin secretory response. 157(6) 2243–2258. doi:  10.1210/en.2015-2003
  40. 40.
    Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X, Zhou Z, Zhang J (2014) Metformin plays a dual role in MIN6 pancreatic beta cell function through AMPK-dependent autophagy. Int J Biol Sci 10(3):268–277. doi:  10.7150/ijbs.7929 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kowluru A, Kowluru RA (2015) Protein prenylation in islet beta-cell function in health and diabetes: Putting the pieces of the puzzle together. Biochem Pharmacol 98(3):363–370. doi:  10.1016/j.bcp.2015.07.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2017

Authors and Affiliations

  • Sartaj Baidwan
    • 1
    • 2
  • Anil Chekuri
    • 3
  • DiAnna L. Hynds
    • 4
  • Anjaneyulu Kowluru
    • 1
    • 2
    • 5
    Email author
  1. 1.β-Cell Biochemistry LaboratoryJohn D. Dingell VA Medical CenterDetroitUSA
  2. 2.Department of Pharmaceutical SciencesWayne State UniversityDetroitUSA
  3. 3.Shiley Eye InstituteUniversity of CaliforniaLa JollaUSA
  4. 4.Department of BiologyTexas Woman’s UniversityDentonUSA
  5. 5.B-4237 Research ServiceJohn D. Dingell VA Medical CenterDetroitUSA

Personalised recommendations