Advertisement

Apoptosis

, Volume 22, Issue 5, pp 647–661 | Cite as

Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress

  • Zhimin Zhang
  • Lianyou ZhaoEmail author
  • Yanfen Zhou
  • Xuanhao Lu
  • Zhengqiang Wang
  • Jipeng Wang
  • Wei Li
Article

Abstract

Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

Keywords

Homocysteine Cardiomyocytes Taurine Endoplasmic reticulum stress Apoptosis 

References

  1. 1.
    Malinow MR, Bostom AG, Krauss RM (1999) Homocyst(e)ine, diet, and cardiovascular diseases: a statement for healthcare professionals from the nutrition committee, American heart association. Circulation 99: 178–182CrossRefPubMedGoogle Scholar
  2. 2.
    Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM (2002) Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss heart study: a randomized controlled trial. JAMA 288:973–979CrossRefPubMedGoogle Scholar
  3. 3.
    Thambyrajah J, Townend JN (2000) Homocysteine and atherothrombosis-Mechanisms for injury. Eur Heart J 21:967–974CrossRefPubMedGoogle Scholar
  4. 4.
    Marasini B, Massarotti M, Biondi ML (2002) Homocysteine and vascular diseases. Circulation 106:e33CrossRefPubMedGoogle Scholar
  5. 5.
    Kim CS, Kim YR, Naqvi A, Kumar S, Hoffman TA, Jung SB et al (2011) Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res 92:466–475CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dong D, Wang B, Yin W, Ding X, Yu J, Kang YJ (2013) Disturbance of copper homeostasis is a mechanism for homocysteine-induced vascular endothelial cell injury. PLoS ONE 8:e76209CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sundstrom J, Vasan RS (2005) Homocysteine and heart failure: a review of investigations from the Framingham heart study. Clin Chem Lab Med 43:987–992CrossRefPubMedGoogle Scholar
  8. 8.
    Wang Y, Shi S, Dong S, Wu J, Song M, Zhong X et al (2015) Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem 399:189–200CrossRefPubMedGoogle Scholar
  9. 9.
    Joseph J, Joseph L, Shekhawat NS, Devi S, Wang J, Melchert RB et al (2003) Hyperhomocysteinemia leads to pathological ventricular hypertrophy in normotensive rats. Am J Physiol Heart Circ Physiol 285:H679–H686CrossRefPubMedGoogle Scholar
  10. 10.
    Singh AP, Singh M, Balakumar P (2008) Effect of mast cell stabilizers in hyperhomocysteinemia-induced cardiac hypertrophy in rats. J Cardiovasc Pharmacol 51:596–604CrossRefPubMedGoogle Scholar
  11. 11.
    Xin W, Li X, Lu X et al (2011) Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia. Int J Mol Med 27:503–509PubMedGoogle Scholar
  12. 12.
    Wang C, Li YZ, Wang XR et al (2012) Panax quinquefolium saponins reduce myocardial hypoxia-reoxygenation injury by inhibiting excessive endoplasmic reticulum stress. Shock 37:228–233CrossRefPubMedGoogle Scholar
  13. 13.
    Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S et al (2004) Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110:705–712CrossRefPubMedGoogle Scholar
  14. 14.
    Liu MQ, Chen Z, Chen LX (2016) Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin 37:425–443CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Luoma PV (2013) Elimination of endoplasmic reticulum stress and cardiovascular, type 2 diabetic, and other metabolic diseases. Ann Med 45:194–202CrossRefPubMedGoogle Scholar
  16. 16.
    Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326–335CrossRefPubMedGoogle Scholar
  17. 17.
    Oyadomari S, Yun C, Fisher EA, Kreglinger N, Kreibich G, Oyadomari M et al (2006) Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126:727–739CrossRefPubMedGoogle Scholar
  18. 18.
    Quick QA, Faison MO (2012) CHOP and caspase 3 induction underlie glioblastoma cell death in response to endoplasmic reticulum stress. Exp Ther Med 3:487–492PubMedGoogle Scholar
  19. 19.
    Anding AL, Chapman JS, Barnett DW, Curley RW, Clagett-Dame M (2007) The unhydrolyzable fenretinide analogue 4-hydroxybenzylretinone induces the proapoptotic genes GADD153 (CHOP) and Bcl-2-binding component 3 (PUMA) and apoptosis that is caspase- dependent and independent of the retinoic acid receptor. Cancer Res 67:6270–6277CrossRefPubMedGoogle Scholar
  20. 20.
    Yu X, Lv J, Zhu Y, Duan L, Ma L (2013) Homocysteine inhibits hepatocyte proliferation via endoplasmic reticulum stress. PLOS ONE 8:e54265CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dickhout JG, Sood SK, Austin RC (2007) Role of endoplasmic reticulum calcium disequilibria in the mechanism of homocysteine-induced ER stress. Antioxid Redox Signal 9:1863–1873CrossRefPubMedGoogle Scholar
  22. 22.
    Park SJ, Kim KJ, Kim WU, Oh IH, ChoC S (2012) Involvement of endoplasmic reticulum stress in homocysteine-induced apoptosis of osteoblastic cells. J Bone Miner Metab 30:474–484CrossRefPubMedGoogle Scholar
  23. 23.
    Wei H, Zhang R, Jin H, Liu D, Tang X, Tang C (2010) Hydrogen sulfide attenuates hyperhomocysteinemia-induced cardiomyocytic endoplasmic reticulum stress in rats. Antioxid Redox Signal 12:1079–1091CrossRefPubMedGoogle Scholar
  24. 24.
    Yamori Y, Nara Y, Ikeda K, Mizushima S (1996) Is taurine a preventive nutritional factor of cardiovascular diseases or just a biological marker of nutrition? Adv Exp Med Biol 403:623–629CrossRefPubMedGoogle Scholar
  25. 25.
    Mathew E, Barletta MA, Lau-Cam CA (2013) The effects of taurine and thiotaurine on oxidative stress in the aorta and heart of diabetic rats. Adv Exp Med Biol 775:345–369CrossRefPubMedGoogle Scholar
  26. 26.
    Ito T, Schaffer S, Azuma J (2014) The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids 46:111–119CrossRefPubMedGoogle Scholar
  27. 27.
    Schaffer SW, Ramila KC, Jong CJ, Shetewy A, Shimada K, Ito T et al (2015) Does taurine prolong lifespan by improving heart function? Adv Exp Med Biol 803:555–570CrossRefPubMedGoogle Scholar
  28. 28.
    Yang Y, Zhang Y, Liu X, Zuo J, Wang K, Liu W, Ge J (2013) Exogenous taurine attenuates mitochondrial oxidative stress and endoplasmic reticulum stress in rat cardiomyocytes. Acta Biochim Biophys Sin 45:359–367CrossRefPubMedGoogle Scholar
  29. 29.
    YangY J, Han YY, Chen K, Zhang Y, Liu X, Li S et al (2015) TonEBP modulates the protective effect of taurine in ischemia-induced cytotoxicity in cardiomyocytes. Cell Death Dis 6:2025CrossRefGoogle Scholar
  30. 30.
    Nonaka H, Tsujino T, Watari Y, Emoto N, Yokoyama M (2001) Taurine prevents the decrease in expression and secretion of extracellular superoxide dismutase induced by homocysteine: amelioration of homocysteine-induced endoplasmic reticulum stress by taurine. Circulation 104:1165–1170CrossRefPubMedGoogle Scholar
  31. 31.
    Shi K, Wang D, Cao X, Ge Y (2013) Endoplasmic reticulum stress signaling is involved in mitomycin C (MMC)-induced apoptosis in human fibroblasts via PERK pathway. PloS ONE 8:e59330CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    He L, Lee J, Jang JH, Sakchaisri K, Hwang J, Cha-Molstad HJ et al (2013) Osteoporosis regulation by salubrinal through eIF2alpha mediated differentiation of osteoclast and osteoblast. Cell Signal 25:552–560CrossRefPubMedGoogle Scholar
  33. 33.
    Matsuoka M, Komoike Y (2015) Experimental evidence shows salubrinal, an eIF2alpha dephosphorylation inhibitor, reduces xenotoxicant-induced cellular damage. Int J Mol Sci 16:16275–16287CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang XC, Sun WT, Yu CM, Pun SH, Underwood MJ, He GW et al (2015) ER stress mediates homocysteine-induced endothelial dysfunction: modulation of IKCa and SKCa channels. Atherosclerosis 242:191–198CrossRefPubMedGoogle Scholar
  35. 35.
    Lentz SR (2005) Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 3:1646–1654CrossRefPubMedGoogle Scholar
  36. 36.
    Chou CT, Lin HT, Hwang PA, Wang ST, Hsieh CH, Hwang DF (2015) Taurine resumed neuronal differentiation in arsenite-treated N2a cells through reducing oxidative stress, endoplasmic reticulum stress, and mitochondrial dysfunction. Amino Acids 47:735–744CrossRefPubMedGoogle Scholar
  37. 37.
    Gharibani PM, Modi J, Pan C, Menzie J, Ma Z, Chen PC et al (2013) The mechanism of taurine protection against endoplasmic reticulum stress in an animal stroke model of cerebral artery occlusion and stroke-related conditions in primary neuronal cell culture. Adv Exp Med Biol 776:241–258CrossRefPubMedGoogle Scholar
  38. 38.
    Jessica A, Paul A, Meischl C, Saskia A, Yvo M, Desire’e E et al (2007) Homocysteine affects cardiomyocyte viability: concentration-dependent effects on reversible flip-flop, apoptosis and necrosis. Apoptosis 12:1407–1418CrossRefGoogle Scholar
  39. 39.
    Di S, Fan C, Yang Y, Jiang S, Liang M, Wu G et al (2015) Activation of endoplasmic reticulum stress is involved in the activity of icariin against human lung adenocarcinoma cells. Apoptosis 20:1229–1241CrossRefPubMedGoogle Scholar
  40. 40.
    Walter DH, Haendeler J, Galle J, Zeiher AM, Dimmeler S (1998) Cyclosporin A inhibits apoptosis of human endothelial cells by preventing release of cytochrome C from mitochondria. Circulation 98:1153–1157CrossRefPubMedGoogle Scholar
  41. 41.
    Uchiyama T, Otani H, Okada T, Ninomiya H, Kido M, Imamura H et al (2002) Nitric oxide induces caspase-dependent apoptosis and necrosis in neonatal rat cardiomyocytes. J Mol Cell Cardiol 34:1049–1061CrossRefPubMedGoogle Scholar
  42. 42.
    De la Cadena SG, Hernandez-Fonseca K, Camacho-Arroyo I, Yang ML (2014) Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis 19:414–427CrossRefPubMedGoogle Scholar
  43. 43.
    Gotoh T, Terada K, Oyadomari S, Mori M (2004) hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11:390–402CrossRefPubMedGoogle Scholar
  44. 44.
    Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere J-P, et al (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19:1880–1891CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cai Z, Shen L, Hong M, Yang J, Yang D, Chen H et al (2015) Involvement of endoplasmic reticulum stress–mediated C/EBP homologous protein activation in coxsackievirus B3–induced acute viral myocarditis. Circulation 8:809–818PubMedGoogle Scholar
  46. 46.
    Takahashi K, Ohyabu Y, Takahashi K, Solodushko V, Takatani T, Itoh T et al (2003) Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 41:726–733CrossRefPubMedGoogle Scholar
  47. 47.
    Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T et al (2004) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287:949–953CrossRefGoogle Scholar
  48. 48.
    Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zhimin Zhang
    • 1
  • Lianyou Zhao
    • 1
    Email author
  • Yanfen Zhou
    • 1
    • 2
  • Xuanhao Lu
    • 1
  • Zhengqiang Wang
    • 1
  • Jipeng Wang
    • 1
  • Wei Li
    • 1
  1. 1.Department of CardiologyTangdu Hospital of the Fourth Military Medical UniversityXi’anPeople’s Republic of China
  2. 2.Department of CardiologyShaanxi Provincial Chinese Traditional Medicine HospitalXi’anPeople’s Republic of China

Personalised recommendations