, Volume 22, Issue 5, pp 730–740 | Cite as

Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells

  • Pascal Djiadeu
  • Lakshmi P. Kotra
  • Neil Sweezey
  • Nades PalaniyarEmail author


Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL–TRAIL receptor induced, but not TNF–TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.


Surfactant protein D Collectins Mucosal surface Fas:Fas Ligand Extrinsic pathway of apoptosis 



Bronchoalveolar lavage


Bovine serum albumin

CD-3, CD-28

Cluster of differentiation 3 and 28


Chronic obstructive pulmonary disease


Carbohydrate recognition domain


4′, 6-diamidino-2-phenylindole


Death receptor


Differential interference contrast


Ethylenediaminetetraacetic acid


Fas-associated death domain


Fas (CD95) Ligand

IL-2, IL-7

Interleukin 2 and 7


Median fluorescence intensity


Peripheral blood mononuclear cells




Systemic lupus erythematosus


Surfactant protein D


Tumor necrosis factor receptor 1


Tumor necrosis factor alpha


Tumor necrosis factor receptor type-1 associated death domain


TNFα receptor apoptosis inducing ligand



This study was funded by Canadian Institutes of Health Research (MOP-111012, N.P) and Cystic Fibrosis Canada (2619, N.P and 3029 to N.S and N.P).


  1. 1.
    Palaniyar N (2010) Editorial: antibody equivalent molecules of the innate immune system: parallels between innate and adaptive immune proteins. Innate Immun 16:131–137CrossRefPubMedGoogle Scholar
  2. 2.
    Litvack ML, Palaniyar N (2010) Review: soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation. Innate Immun 16:191–200CrossRefPubMedGoogle Scholar
  3. 3.
    Xu J, Singhera GK, Dorscheid DR (2015) Expression of surfactant protein D in airways of asthmatics and interleukin-13 modulation of surfactant protein D in human models of airway epithelium. Respir Res 16:26CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Forbes LR, Haczku A (2014) SP-D and regulation of the pulmonary innate immune system in allergic airway changes. Clin Exp Allergy 40:547–562CrossRefGoogle Scholar
  5. 5.
    Jakel A, Qaseem AS, Kishore U, Sim RB (2013) Ligands and receptors of lung surfactant proteins SP-A and SP-D. Front Biosci 18:1129–1140CrossRefGoogle Scholar
  6. 6.
    Qaseem AS, Sonar S, Mahajan L et al (2013) Linking surfactant protein SP-D and IL-13: implications in asthma and allergy. Mol Immunol 54:98–107CrossRefPubMedGoogle Scholar
  7. 7.
    Schleh C, Rothen-Rutishauser BM, Blank F et al (2012) Surfactant protein D modulates allergen particle uptake and inflammatory response in a human epithelial airway model. Respir Res 13:8CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chroneos ZC, Sever-Chroneos Z, Shepherd VL (2010) Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 25:13–26CrossRefPubMedGoogle Scholar
  9. 9.
    Botas C, Poulain F, Akiyama J et al (1998) Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci USA 95:11869–11874CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Korfhagen TR, Sheftelyevich V, Burhans MS et al (1998) Surfactant protein-D regulates surfactant phospholipid homeostasis in vivo. J Biol Chem 273:28438–28443CrossRefPubMedGoogle Scholar
  11. 11.
    Clark H, Palaniyar N, Strong P, Edmondson J, Hawgood S, Reid KB (2002) Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J Immunol 169:2892–2899CrossRefPubMedGoogle Scholar
  12. 12.
    Liu J, Abdel-Razek O, Liu Z et al (2015) Role of surfactant proteins A and D in sepsis-induced acute kidney injury. Shock 43:31–38CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nikolaidis NM, White MR, Allen K et al (2014) Mutations flanking the carbohydrate binding site of surfactant protein D confer antiviral activity for pandemic influenza A viruses. Am J Physiol Lung Cell Mol Physiol 306:L1036–L1044CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Seaton BA, Crouch EC, McCormack FX, Head JF, Hartshorn KL, Mendelsohn R (2010) Review: structural determinants of pattern recognition by lung collectins. Innate Immun 16:143–150CrossRefPubMedGoogle Scholar
  15. 15.
    Hartshorn KL, White MR, Rynkiewicz M et al (2010) Monoclonal antibody-assisted structure-function analysis of the carbohydrate recognition domain of surfactant protein D. Am J Physiol Lung Cell Mol Physiol 299:L384–L392CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shrive AK, Martin C, Burns I et al (2009) Structural characterisation of ligand-binding determinants in human lung surfactant protein D: influence of Asp325. J Mol Biol 394:776–788CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shrive AK, Tharia HA, Strong P et al (2003) High-resolution structural insights into ligand binding and immune cell recognition by human lung surfactant protein D. J Mol Biol 331:509–523CrossRefPubMedGoogle Scholar
  18. 18.
    Borron PJ, Crouch EC, Lewis JF, Wright JR, Possmayer F, Fraher LJ (1998) Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production. J Immunol 161:4599–4603PubMedGoogle Scholar
  19. 19.
    Borron PJ, Mostaghel EA, Doyle C, Walsh ES, McHeyzer-Williams MG, Wright JR (2002) Pulmonary surfactant proteins A and D directly suppress CD3+/CD4+ cell function: evidence for two shared mechanisms. J Immunol 169:5844–5850CrossRefPubMedGoogle Scholar
  20. 20.
    Janssen WJ, McPhillips KA, Dickinson MG et al (2008) Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am J Respir Crit Care Med 178:158–167CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lin KW, Jen KY, Suarez CJ, Crouch EC, Perkins DL, Finn PW (2010) Surfactant protein D-mediated decrease of allergen-induced inflammation is dependent upon CTLA4. J Immunol 184:6343–6349CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mahajan L, Gautam P, Dodagatta-Marri E, Madan T, Kishore U (2014) Surfactant protein SP-D modulates activity of immune cells: proteomic profiling of its interaction with eosinophilic cells. Expert Rev Proteomics 11:355–369CrossRefPubMedGoogle Scholar
  23. 23.
    Mahajan L, Pandit H, Madan T et al (2013) Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line. PLoS ONE 8:e85046CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Litvack ML, Djiadeu P, Renganathan SD, Sy S, Post M, Palaniyar N (2010) Natural IgM and innate immune collectin SP-D bind to late apoptotic cells and enhance their clearance by alveolar macrophages in vivo. Mol Immunol 48:37–47CrossRefPubMedGoogle Scholar
  25. 25.
    Palaniyar N, Clark H, Nadesalingam J, Shih MJ, Hawgood S, Reid KB (2005) Innate immune collectin surfactant protein D enhances the clearance of DNA by macrophages and minimizes anti-DNA antibody generation. J Immunol 174:7352–7358CrossRefPubMedGoogle Scholar
  26. 26.
    Vandivier RW, Ogden CA, Fadok VA et al (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978–3986CrossRefPubMedGoogle Scholar
  27. 27.
    Jakel A, Clark H, Reid KB, Sim RB (2010) Surface-bound myeloperoxidase is a ligand for recognition of late apoptotic neutrophils by human lung surfactant proteins A and D. Protein Cell 1:563–572CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jakel A, Clark H, Reid KB, Sim RB (2010) The human lung surfactant proteins A (SP-A) and D (SP-D) interact with apoptotic target cells by different binding mechanisms. Immunobiology 215:551–558CrossRefPubMedGoogle Scholar
  29. 29.
    Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133:693–703CrossRefPubMedGoogle Scholar
  31. 31.
    Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356CrossRefPubMedGoogle Scholar
  32. 32.
    Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14:166–180CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL (2011) Modulation of macrophage efferocytosis in inflammation. Front Immunol 2:57CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ullal AJ, Pisetsky DS (2010) The release of microparticles by Jurkat leukemia T cells treated with staurosporine and related kinase inhibitors to induce apoptosis. Apoptosis 15:586–596CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Madsen J, Kliem A, Tornoe I, Skjodt K, Koch C, Holmskov U (2000) Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol 164:5866–5870CrossRefPubMedGoogle Scholar
  36. 36.
    Akiyama J, Hoffman A, Brown C et al (2002) Tissue distribution of surfactant proteins A and D in the mouse. J Histochem Cytochem 50:993–996CrossRefPubMedGoogle Scholar
  37. 37.
    Nadesalingam J, Bernal AL, Dodds AW et al (2003) Identification and characterization of a novel interaction between pulmonary surfactant protein D and decorin. J Biol Chem 278:25678–25687CrossRefPubMedGoogle Scholar
  38. 38.
    Nadesalingam J, Dodds AW, Reid KB, Palaniyar N (2005) Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. J Immunol 175:1785–1794CrossRefPubMedGoogle Scholar
  39. 39.
    Douda DN, Farmakovski N, Dell S, Grasemann H, Palaniyar N (2009) SP-D counteracts GM-CSF-mediated increase of granuloma formation by alveolar macrophages in lysinuric protein intolerance. Orphanet J Rare Dis 4:29CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yang L, Carrillo M, Wu YM et al (2015) SP-R210 (Myo18A) isoforms as intrinsic modulators of macrophage priming and activation. PloS ONE 10:e0126576CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Palaniyar N, Nadesalingam J, Clark H, Shih MJ, Dodds AW, Reid KB (2004) Nucleic acid is a novel ligand for innate, immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin. J Biol Chem 279:32728–32736CrossRefPubMedGoogle Scholar
  42. 42.
    White MR, Crouch E, Vesona J et al (2005) Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus. Am J Physiol Lung Cell Mol Physiol 289:L606–L616CrossRefPubMedGoogle Scholar
  43. 43.
    Pandit H, Thakur G, Koippallil Gopalakrishnan AR et al (2016) Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells. Immunobiology 221:310–322CrossRefPubMedGoogle Scholar
  44. 44.
    Mahajan L, Madan T, Kamal N et al (2008) Recombinant surfactant protein-D selectively increases apoptosis in eosinophils of allergic asthmatics and enhances uptake of apoptotic eosinophils by macrophages. Int Immunol 20:993–1007CrossRefPubMedGoogle Scholar
  45. 45.
    Hoegh SV, Voss A, Sorensen GL et al (2009) Circulating surfactant protein D is decreased in systemic lupus erythematosus. J Rheumatol 36:2449–2453CrossRefPubMedGoogle Scholar
  46. 46.
    Madsen J, Gaiha GD, Palaniyar N, Dong T, Mitchell DA, Clark HW (2013) Surfactant protein D modulates HIV infection of both T-cells and dendritic cells. PloS ONE 8:e59047CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Henson PM, Tuder RM (2008) Apoptosis in the lung: induction, clearance and detection. Am J Physiol Lung Cell Mol Physiol 294:L601–L611CrossRefPubMedGoogle Scholar
  48. 48.
    Bowler RP (2012) Surfactant protein D as a biomarker for chronic obstructive pulmonary disease. COPD 9:651–653CrossRefPubMedGoogle Scholar
  49. 49.
    Jaw JE, Sin DD (2012) Unifying thoracic biomarkers: surfactant protein-D and beyond. Expert Rev Respir Med 6:147–154CrossRefPubMedGoogle Scholar
  50. 50.
    Erpenbeck VJ, Malherbe DC, Sommer S et al (2005) Surfactant protein D increases phagocytosis and aggregation of pollen-allergen starch granules. Am J Physiol Lung Cell Mol Physiol 288:L692–L698CrossRefPubMedGoogle Scholar
  51. 51.
    Hartl D, Griese M (2006) Surfactant protein D in human lung diseases. Eur J Clin Invest 36:423–435CrossRefPubMedGoogle Scholar
  52. 52.
    Duvoix A, Mackay RM, Henderson N et al (2011) Physiological concentration of calcium inhibits elastase-induced cleavage of a functional recombinant fragment of surfactant protein D. Immunobiology 216:72–79CrossRefPubMedGoogle Scholar
  53. 53.
    Cooley J, McDonald B, Accurso FJ, Crouch EC, Remold-O’Donnell E (2008) Patterns of neutrophil serine protease-dependent cleavage of surfactant protein D in inflammatory lung disease. J Leukoc Biol 83:946–955CrossRefPubMedGoogle Scholar
  54. 54.
    Park JW, Ryter SW, Choi AM (2007) Functional significance of apoptosis in chronic obstructive pulmonary disease. COPD 4:347–353CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pascal Djiadeu
    • 1
    • 2
  • Lakshmi P. Kotra
    • 2
    • 3
  • Neil Sweezey
    • 1
  • Nades Palaniyar
    • 1
    • 4
    • 5
    Email author
  1. 1.Lung Innate Immunity Research Laboratory, Program in Physiology and Experimental MedicinePeter Gilgan Centre for Research and Learning, The Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada
  3. 3.Center for Molecular Design and Preformulations, Toronto General Research InstituteUniversity Health NetworkTorontoCanada
  4. 4.Departments of Laboratory Medicine and Pathobiology and Institute of Medical Sciences, Faculty of MedicineUniversity of TorontoTorontoCanada
  5. 5.Innate Immunity Research LaboratoryPeter Gilgan Centre for Research and Learning, The Hospital for Sick ChildrenTorontoCanada

Personalised recommendations