, Volume 22, Issue 3, pp 421–436 | Cite as

Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents

  • Manuel Oropesa-Ávila
  • Patricia de la Cruz-Ojeda
  • Jesús Porcuna
  • Marina Villanueva-Paz
  • Alejandro Fernández-Vega
  • Mario de la Mata
  • Isabel de Lavera
  • Juan Miguel Suarez Rivero
  • Raquel Luzón–Hidalgo
  • Mónica Álvarez-Córdoba
  • David Cotán
  • Ana Paula Zaderenko
  • Mario D. Cordero
  • José A. Sánchez-AlcázarEmail author


Cell cytoskeleton makes profound changes during apoptosis including the organization of an Apoptotic Microtubule Network (AMN). AMN forms a cortical structure which plays an important role in preserving plasma membrane integrity during apoptosis. Here, we examined the cytoskeleton rearrangements during apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. Using fixed and living cell imaging, we showed that CPT induced two dose- and cell cycle-dependent types of apoptosis characterized by different cytoskeleton reorganizations, time-dependent caspase activation and final apoptotic cell morphology. In the one referred as “slow” (~h) or round-shaped, apoptosis was characterized by a slow contraction of the actinomyosin ring and late caspase activation. In “slow” apoptosis the γ-tubulin complexes were not disorganized and microtubules were not depolymerized at early stages. In contrast, “fast” (~min) or irregular-shaped apoptosis was characterized by early caspase activation followed by full contraction of the actinomyosin ring. In fast apoptosis γ-tubulin complexes were disorganized and microtubules were initially depolymerized. However, after actinomyosin contraction, microtubules were reformed adopting a cortical but irregular disposition near plasma membrane. In addition to distinctive cytoskeleton reorganization kinetics, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocytes response. Our results suggest that the knowledge and modulation of the type of apoptosis promoted by genotoxic agents may be important for deciding a better therapeutic option and predicting the immune response in cancer treatment.


Apoptosis Microtubules Actin Caspases Camptothecin 



Apoptotic microtubule network






Fluorescent ubiquitination-based cell cycle indicator


Glyceraldehyde-3-phosphate dehydrogenase


Myosin light chain


Lactic dehydrogenase


Lysophosphatidic acid


γ-tubulin ring complexes.



This work was supported by FIS PI13/00129 grant, Instituto de Salud Carlos III, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), Proyecto de Investigación de Excelencia de la Junta de Andalucía CTS-5725, and by AEPMI (Asociación de Enfermos de Patología Mitocondrial) and ENACH (Asociación de Enfermos de Neurodegeneración con Acumulación Cerebral de Hierro).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10495_2016_1337_MOESM1_ESM.pdf (6.6 mb)
Supplementary material 1 (PDF 6723 KB)


  1. 1.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975CrossRefPubMedGoogle Scholar
  3. 3.
    Mills JC, Stone NL, Pittman RN (1999) Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J Cell Biol 146:703–708CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ndozangue-Touriguine O, Hamelin J, Breard J (2008) Cytoskeleton and apoptosis. Biochem Pharmacol 76:11–18CrossRefPubMedGoogle Scholar
  5. 5.
    Oropesa Avila M, Fernandez Vega A, Garrido Maraver J, et al (2015) Emerging roles of apoptotic microtubules during the execution phase of apoptosis. Cytoskeleton 72:435–446.CrossRefPubMedGoogle Scholar
  6. 6.
    Pittman S, Geyp M, Fraser M, Ellem K, Peaston A, Ireland C (1997) Multiple centrosomal microtubule organising centres and increased microtubule stability are early features of VP-16-induced apoptosis in CCRF-CEM cells. Leuk Res 21:491–499CrossRefPubMedGoogle Scholar
  7. 7.
    Pittman SM, Strickland D, Ireland CM (1994) Polymerization of tubulin in apoptotic cells is not cell cycle dependent. Exp Cell Res 215:263–272CrossRefPubMedGoogle Scholar
  8. 8.
    Oropesa-Avila M, Fernandez-Vega A, de la Mata M, et al (2014) Apoptotic cells subjected to cold/warming exposure disorganize apoptotic microtubule network and undergo secondary necrosis. Apoptosis 19:1364–1377.CrossRefPubMedGoogle Scholar
  9. 9.
    Oropesa-Avila M, Fernandez-Vega A, de la Mata M, et al (2013) Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis. Cell Death Dis 4:e527.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sanchez-Alcazar JA, Rodriguez-Hernandez A, Cordero MD, et al. (2007) The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis. Apoptosis 12:1195–1208.CrossRefPubMedGoogle Scholar
  11. 11.
    Moss DK, Lane JD (2006) Microtubules: forgotten players in the apoptotic execution phase. Trends Cell Biol 16:330–338CrossRefPubMedGoogle Scholar
  12. 12.
    Moss DK, Betin VM, Malesinski SD, Lane JD (2006) A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J Cell Sci 119:2362–2374CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Coleman ML, Olson MF (2002) Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9:493–504CrossRefPubMedGoogle Scholar
  14. 14.
    Shi J, Wei L (2007) Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp 55:61–75CrossRefGoogle Scholar
  15. 15.
    Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352CrossRefPubMedGoogle Scholar
  16. 16.
    Moss DK, Wilde A, Lane JD (2009) Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase. J Cell Sci 122:644–655CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Byun Y, Chen F, Chang R, Trivedi M, Green KJ, Cryns VL (2001) Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ 8:443–450CrossRefPubMedGoogle Scholar
  18. 18.
    Caulin C, Salvesen GS, Oshima RG (1997) Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 138:1379–1394CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen F, Chang R, Trivedi M, Capetanaki Y, Cryns VL (2003) Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis. J Biol Chem 278:6848–6853CrossRefPubMedGoogle Scholar
  20. 20.
    Rodriguez-Hernandez A, Brea-Calvo G, Fernandez-Ayala DJ, Cordero M, Navas P, Sanchez-Alcazar JA. (2006) Nuclear caspase-3 and caspase-7 activation, and Poly(ADP-ribose) polymerase cleavage are early events in camptothecin-induced apoptosis. Apoptosis 11:131–139.CrossRefPubMedGoogle Scholar
  21. 21.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  22. 22.
    Chen JC, Zhuang S, Nguyen TH, Boss GR, Pilz RB (2003) Oncogenic Ras leads to Rho activation by activating the mitogen-activated protein kinase pathway and decreasing Rho-GTPase-activating protein activity. J Biol Chem 278:2807–2818CrossRefPubMedGoogle Scholar
  23. 23.
    Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol Biol 281:301–311PubMedGoogle Scholar
  24. 24.
    Guerra L, Carr HS, Richter-Dahlfors A et al (2008) A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage. PLoS ONE 3:e2254CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Blagosklonny MV (2000) Cell death beyond apoptosis. Leukemia 14:1502–1508CrossRefPubMedGoogle Scholar
  26. 26.
    Raychaudhuri S, Willgohs E, Nguyen TN, Khan EM, Goldkorn T (2008) Monte Carlo simulation of cell death signaling predicts large cell-to-cell stochastic fluctuations through the type 2 pathway of apoptosis. Biophys J 95:3559–3562CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Broker LE, Huisman C, Ferreira CG, Rodriguez JA, Kruyt FA, Giaccone G (2002) Late activation of apoptotic pathways plays a negligible role in mediating the cytotoxic effects of discodermolide and epothilone B in non-small cell lung cancer cells. Cancer Res 62:4081–4088PubMedGoogle Scholar
  28. 28.
    Brady HJ, Gil-Gomez G, Kirberg J, Berns AJ (1996) Bax alpha perturbs T cell development and affects cell cycle entry of T cells. EMBO J 15:6991–7001PubMedPubMedCentralGoogle Scholar
  29. 29.
    North S, Hainaut P. (2000) p53 and cell-cycle control: a finger in every pie. Pathol-Biol 48:255–270.PubMedGoogle Scholar
  30. 30.
    Vairo G, Soos TJ, Upton TM et al (2000) Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol Cell Biol 20:4745–4753CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schwartz M (2004) Rho signalling at a glance. J Cell Sci 117:5457–5458CrossRefPubMedGoogle Scholar
  32. 32.
    Iden S, Collard JG. (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9:846–859.CrossRefPubMedGoogle Scholar
  33. 33.
    Kjoller L, Hall A (1999) Signaling to Rho GTPases. Exp Cell Res 253:166–179CrossRefPubMedGoogle Scholar
  34. 34.
    Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635CrossRefPubMedGoogle Scholar
  35. 35.
    Glotzer M (2005) The molecular requirements for cytokinesis. Science 307:1735–1739CrossRefPubMedGoogle Scholar
  36. 36.
    Matsumura F (2005) Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol 15:371–377CrossRefPubMedGoogle Scholar
  37. 37.
    Piekny A, Werner M, Glotzer M (2005) Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15:651–658CrossRefPubMedGoogle Scholar
  38. 38.
    Collazo J, Zhu B, Larkin S et al (2014) Cofilin drives cell-invasive and metastatic responses to TGF-beta in prostate cancer. Cancer Res 74:2362–2373CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Amano M, Ito M, Kimura K et al (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Manuel Oropesa-Ávila
    • 1
  • Patricia de la Cruz-Ojeda
    • 1
  • Jesús Porcuna
    • 1
  • Marina Villanueva-Paz
    • 1
  • Alejandro Fernández-Vega
    • 1
  • Mario de la Mata
    • 1
  • Isabel de Lavera
    • 1
  • Juan Miguel Suarez Rivero
    • 1
  • Raquel Luzón–Hidalgo
    • 1
  • Mónica Álvarez-Córdoba
    • 1
  • David Cotán
    • 1
  • Ana Paula Zaderenko
    • 2
  • Mario D. Cordero
    • 3
  • José A. Sánchez-Alcázar
    • 1
    Email author
  1. 1.Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos IIIUniversidad Pablo de Olavide-Consejo Superior de Investigaciones CientíficasSevillaSpain
  2. 2.Sistemas FísicosQuímicos y Naturales-Universidad Pablo de OlavideSevillaSpain
  3. 3.Facultad de OdontologíaUniversidad de SevillaSevillaSpain

Personalised recommendations