, Volume 21, Issue 12, pp 1422–1437 | Cite as

Targeted knockdown of DJ-1 induces multiple myeloma cell death via KLF6 upregulation

  • Prahlad V. Raninga
  • Giovanna Di Trapani
  • Slavica Vuckovic
  • Kathryn F. TonissenEmail author


Multiple myeloma (MM) is an incurable plasma B cell malignancy. Despite recent advancements in anti-MM therapies, development of drug resistance remains a major clinical hurdle. DJ-1, a Parkinson’s disease-associated protein, is upregulated in many cancers and its knockdown suppresses tumor growth and overcomes chemoresistance. However, the role of DJ-1 in MM remains unknown. Using gene expression databases we found increased DJ-1 expression in MM patient cells, which correlated with shorter overall survival and poor prognosis in MM patients. Targeted DJ-1 knockdown using siRNAs induced necroptosis in myeloma cells. We found that Krüppel-like factor 6 (KLF6) is expressed at lower levels in myeloma cells compared to PBMCs, and DJ-1 knockdown increased KLF6 expression in myeloma cells. Targeted knockdown of KLF6 expression in DJ-1 knockdown myeloma cells rescued these cells from undergoing cell death. Higher DJ-1 levels were observed in bortezomib-resistant myeloma cells compared to parent cells, and siRNA-mediated DJ-1 knockdown reversed bortezomib resistance. DJ-1 knockdown increased KLF6 expression in bortezomib-resistant myeloma cells, and subsequent siRNA-mediated KLF6 knockdown rescued bortezomib-resistant myeloma cells from undergoing cell death. We also demonstrated that specific siRNA-mediated DJ-1 knockdown reduced myeloma cell growth under a hypoxic microenvironment. DJ-1 knockdown reduced the expression of HIF-1α and its target genes in hypoxic-myeloma cells, and overcame hypoxia-induced bortezomib resistance. Our findings demonstrate that elevated DJ-1 levels correlate with myeloma cell survival and acquisition of bortezomib resistance. Thus, we propose that inhibiting DJ-1 may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM patients.


DJ-1 Drug resistance Hypoxia KLF6 Necroptosis Multiple myeloma 



Analysis of variance


Bone marrow




Cycle of threshold


Copper–zinc superoxide dismutase


Enhanced chemiluminescence


Gene expression profile


Hypoxia-inducible factor-1 alpha


Hazard ratio




Krüppel-like factor 6


Lactate dehydrogenase A


Multiple myeloma


Nuclear factor kappa beta


Nuclear factor-E2-related factor 2




Peripheral blood mononuclear cells


Parkinson’s disease


Phosphoinositide-3 kinase


Phorbol 12-myristate 13-acetate


Phosphatase and tensin homolog


Ribosomal Protein L32


Reverse transcriptase-quantitative PCR


Standard error of the mean


Small interfering RNA


Second mitochondrial activator of apoptosis


Tumor necrosis factor-related apoptosis-inducing ligand


Thioredoxin 1


Thioredoxin reductase 1


Total therapy 2


Total therapy 3


Bortezomib-resistant U266 cells


Vascular endothelial growth factor



We thank A/Prof. Stephen Wood (Eskitis Institute, Brisbane, Australia) and his lab members for their help in setting up transfection experiments, Prof. George Mellick (Eskitis Institute, Brisbane, Australia) for collecting the blood samples from healthy individuals, and Tony Blick (Queensland University of Technology, Australia) for technical advice.


This research was supported by a Griffith University Post-graduate Research Scholarship and a Griffith University International Post-graduate Scholarship (to P. R). This research was also supported by the Cancer Therapeutics CRC (Australia) PhD Top-Up Scholarship to P. R. We also thank Griffith University for providing additional financial support to carry out this research.

Compliance with ethical standards

The experiments performed in this study comply with the current laws of Australia.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10495_2016_1303_MOESM1_ESM.tif (71 kb)
Figure S1: siRNA-induced knockdown of KLF6 in PBMCs. PBMCs (2 × 106 cells) were transfected with 50 nmol/l of either control or KLF6-specific siRNA. KLF6 mRNA levels were analyzed 48 h post-transfection by RT-qPCR. KLF6 mRNA levels were normalized against RPL32. Values indicated mean ± SEM (n = 3). Unpaired Student’s t test was employed. *P < 0.05 (TIF 70 KB)


  1. 1.
    Nagakubo D, Taira T, Kitaura H, Ikeda M, Tamai K, Iguchi-Ariga SM, Ariga H (1997) DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Biophys Res Commun 231(2):509–513. doi: 10.1006/bbrc.1997.6132 PubMedCrossRefGoogle Scholar
  2. 2.
    Hod Y (2004) Differential control of apoptosis by DJ-1 in prostate benign and cancer cells. J Cell Biochem 92(6):1221–1233. doi: 10.1002/jcb.20159 PubMedCrossRefGoogle Scholar
  3. 3.
    Le Naour F, Misek DE, Krause MC, Deneux L, Giordano TJ, Scholl S, Hanash SM (2001) Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res 7(11):3328–3335PubMedGoogle Scholar
  4. 4.
    Liu H, Wang M, Li M, Wang D, Rao Q, Wang Y, Xu Z, Wang J (2008) Expression and role of DJ-1 in leukemia. Biochem Biophys Res Commun 375(3):477–483. doi: 10.1016/j.bbrc.2008.08.046 PubMedCrossRefGoogle Scholar
  5. 5.
    Davidson B, Hadar R, Schlossberg A, Sternlicht T, Slipicevic A, Skrede M, Risberg B, Florenes VA, Kopolovic J, Reich R (2008) Expression and clinical role of DJ-1, a negative regulator of PTEN, in ovarian carcinoma. Hum Pathol 39(1):87–95. doi: 10.1016/j.humpath.2007.05.014 PubMedCrossRefGoogle Scholar
  6. 6.
    Zeng HZ, Qu YQ, Zhang WJ, Xiu B, Deng AM, Liang AB (2011) Proteomic analysis identified DJ-1 as a cisplatin resistant marker in non-small cell lung cancer. Int J Mol Sci 12(6):3489–3499. doi: 10.3390/ijms12063489 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Arnouk H, Merkley MA, Podolsky RH, Stoppler H, Santos C, Alvarez M, Mariategui J, Ferris D, Lee JR, Dynan WS (2009) Characterization of molecular markers indicative of cervical cancer progression. Proteomics Clin Appl 3(5):516–527. doi: 10.1002/prca.200800068 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zhang HY, Wang HQ, Liu HM, Guan Y, Du ZX (2008) Regulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by DJ-1 in thyroid cancer cells. Endocr Relat Cancer 15(2):535–544. doi: 10.1677/ERC-07-0195 PubMedCrossRefGoogle Scholar
  9. 9.
    Pardo M, Garcia A, Thomas B, Pineiro A, Akoulitchev A, Dwek RA, Zitzmann N (2006) The characterization of the invasion phenotype of uveal melanoma tumour cells shows the presence of MUC18 and HMG-1 metastasis markers and leads to the identification of DJ-1 as a potential serum biomarker. Int J Cancer 119(5):1014–1022. doi: 10.1002/ijc.21942 PubMedCrossRefGoogle Scholar
  10. 10.
    Kim RH, Peters M, Jang Y, Shi W, Pintilie M, Fletcher GC, DeLuca C, Liepa J, Zhou L, Snow B, Binari RC, Manoukian AS, Bray MR, Liu FF, Tsao MS, Mak TW (2005) DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7(3):263–273. doi: 10.1016/j.ccr.2005.02.010 PubMedCrossRefGoogle Scholar
  11. 11.
    He X, Zheng Z, Li J, Ben Q, Liu J, Zhang J, Ji J, Yu B, Chen X, Su L, Zhou L, Liu B, Yuan Y (2012) DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/ERK/uPA. Carcinogenesis 33(3):555–562. doi: 10.1093/carcin/bgs002 PubMedCrossRefGoogle Scholar
  12. 12.
    Yuen HF, Chan YP, Law S, Srivastava G, El-Tanani M, Mak TW, Chan KW (2008) DJ-1 could predict worse prognosis in esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 17(12):3593–3602. doi: 10.1158/1055-9965.EPI-08-0214 PubMedCrossRefGoogle Scholar
  13. 13.
    Chen Y, Kang M, Lu W, Guo Q, Zhang B, Xie Q, Wu Y (2012) DJ-1, a novel biomarker and a selected target gene for overcoming chemoresistance in pancreatic cancer. J Cancer Res Clin Oncol 138(9):1463–1474. doi: 10.1007/s00432-012-1205-3 PubMedCrossRefGoogle Scholar
  14. 14.
    Ismail IA, Kang HS, Lee HJ, Kwon BM, Hong SH (2012) 2′-Benzoyloxycinnamaldehyde-mediated DJ-1 upregulation protects MCF-7 cells from mitochondrial damage. Biol Pharm Bull 35(6):895–902PubMedCrossRefGoogle Scholar
  15. 15.
    Bieker JJ (2001) Kruppel-like factors: three fingers in many pies. J Biol Chem 276(37):34355–34358. doi: 10.1074/jbc.R100043200 PubMedCrossRefGoogle Scholar
  16. 16.
    Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188(2):143–160. doi: 10.1002/jcp.1111 PubMedCrossRefGoogle Scholar
  17. 17.
    Hatami R, Sieuwerts AM, Izadmehr S, Yao Z, Qiao RF, Papa L, Look MP, Smid M, Ohlssen J, Levine AC, Germain D, Burstein D, Kirschenbaum A, DiFeo A, Foekens JA, Narla G (2013) KLF6-SV1 drives breast cancer metastasis and is associated with poor survival. Sci Transl Med 5(169):169ra112. doi: 10.1126/scitranslmed.3004688 CrossRefGoogle Scholar
  18. 18.
    Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC, Glucksman MJ, Narla J, Eng FJ, Chan AM, Ferrari AC, Martignetti JA, Friedman SL (2001) KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294(5551):2563–2566. doi: 10.1126/science.1066326 PubMedCrossRefGoogle Scholar
  19. 19.
    Reeves HL, Narla G, Ogunbiyi O, Haq AI, Katz A, Benzeno S, Hod E, Harpaz N, Goldberg S, Tal-Kremer S, Eng FJ, Arthur MJ, Martignetti JA, Friedman SL (2004) Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology 126(4):1090–1103PubMedCrossRefGoogle Scholar
  20. 20.
    Kremer-Tal S, Reeves HL, Narla G, Thung SN, Schwartz M, Difeo A, Katz A, Bruix J, Bioulac-Sage P, Martignetti JA, Friedman SL (2004) Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma. Hepatology 40(5):1047–1052. doi: 10.1002/hep.20460 PubMedCrossRefGoogle Scholar
  21. 21.
    Cho YG, Kim CJ, Park CH, Yang YM, Kim SY, Nam SW, Lee SH, Yoo NJ, Lee JY, Park WS (2005) Genetic alterations of the KLF6 gene in gastric cancer. Oncogene 24(28):4588–4590. doi: 10.1038/sj.onc.1208670 PubMedCrossRefGoogle Scholar
  22. 22.
    DiFeo A, Narla G, Hirshfeld J, Camacho-Vanegas O, Narla J, Rose SL, Kalir T, Yao S, Levine A, Birrer MJ, Bonome T, Friedman SL, Buller RE, Martignetti JA (2006) Roles of KLF6 and KLF6-SV1 in ovarian cancer progression and intraperitoneal dissemination. Clin Cancer Res 12(12):3730–3739. doi: 10.1158/1078-0432.CCR-06-0054 PubMedCrossRefGoogle Scholar
  23. 23.
    Jeng YM, Hsu HC (2003) KLF6, a putative tumor suppressor gene, is mutated in astrocytic gliomas. Int J Cancer 105(5):625–629. doi: 10.1002/ijc.11123 PubMedCrossRefGoogle Scholar
  24. 24.
    Cai D, Zhao J, Sun Q (2014) Kruppel-like factor 6 in the progression and prognosis of malignant melanoma. J Int Med Res 42(1):184–190. doi: 10.1177/0300060513499092 PubMedCrossRefGoogle Scholar
  25. 25.
    Ito G, Uchiyama M, Kondo M, Mori S, Usami N, Maeda O, Kawabe T, Hasegawa Y, Shimokata K, Sekido Y (2004) Kruppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells. Cancer Res 64(11):3838–3843. doi: 10.1158/0008-5472.CAN-04-0185 PubMedCrossRefGoogle Scholar
  26. 26.
    Huang X, Li X, Guo B (2008) KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. J Biol Chem 283(44):29795–29801. doi: 10.1074/jbc.M802515200 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Camacho-Vanegas O, Narla G, Teixeira MS, DiFeo A, Misra A, Singh G, Chan AM, Friedman SL, Feuerstein BG, Martignetti JA (2007) Functional inactivation of the KLF6 tumor suppressor gene by loss of heterozygosity and increased alternative splicing in glioblastoma. Int J Cancer 121(6):1390–1395. doi: 10.1002/ijc.22809 PubMedCrossRefGoogle Scholar
  28. 28.
    Ismail IA, Kang HS, Lee HJ, Kim JK, Hong SH (2014) DJ-1 upregulates breast cancer cell invasion by repressing KLF17 expression. Br J Cancer 110(5):1298–1306. doi: 10.1038/bjc.2014.40 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Raninga PV, Di Trapani G, Vuckovic S, Tonissen KF (2016) TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance in multiple myeloma through NF-kB inhibition. Cell Cycle 15(4):559–572. doi: 10.1080/15384101.2015.1136038 PubMedCrossRefGoogle Scholar
  30. 30.
    Muz B, de la Puente P, Azab F, Luderer M, Azab AK (2014) Hypoxia promotes stem cell-like phenotype in multiple myeloma cells. Blood Cancer J 4:e262. doi: 10.1038/bcj.2014.82 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Vasseur S, Afzal S, Tardivel-Lacombe J, Park DS, Iovanna JL, Mak TW (2009) DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc Natl Acad Sci USA 106(4):1111–1116. doi: 10.1073/pnas.0812745106 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Matsuoka Y, Moore GE, Yagi Y, Pressman D (1967) Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma. Proc Soc Exp Biol Med 125(4):1246–1250PubMedCrossRefGoogle Scholar
  33. 33.
    Nilsson K, Bennich H, Johansson SG, Ponten J (1970) Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin Exp Immunol 7(4):477–489PubMedPubMedCentralGoogle Scholar
  34. 34.
    Karlenius TC, Shah F, Di Trapani G, Clarke FM, Tonissen KF (2012) Cycling hypoxia up-regulates thioredoxin levels in human MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 419(2):350–355. doi: 10.1016/j.bbrc.2012.02.027 PubMedCrossRefGoogle Scholar
  35. 35.
    Raninga PV, Di Trapani G, Vuckovic S, Bhatia M, Tonissen KF (2015) Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma. Oncotarget 6(17):15410–15424. doi: 10.18632/oncotarget.3795 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lafleur MA, Drew AF, de Sousa EL, Blick T, Bills M, Walker EC, Williams ED, Waltham M, Thompson EW (2005) Upregulation of matrix metalloproteinases (MMPs) in breast cancer xenografts: a major induction of stromal MMP-13. Int J Cancer 114(4):544–554. doi: 10.1002/ijc.20763 PubMedCrossRefGoogle Scholar
  37. 37.
    Wang Y, Wang H, Tao Y, Zhang S, Wang J, Feng X (2014) Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 266:91–101. doi: 10.1016/j.neuroscience.2014.02.007 PubMedCrossRefGoogle Scholar
  38. 38.
    Narla G, Kremer-Tal S, Matsumoto N, Zhao X, Yao S, Kelley K, Tarocchi M, Friedman SL (2007) In vivo regulation of p21 by the Kruppel-like factor 6 tumor-suppressor gene in mouse liver and human hepatocellular carcinoma. Oncogene 26(30):4428–4434. doi: 10.1038/sj.onc.1210223 PubMedCrossRefGoogle Scholar
  39. 39.
    Maiso P, Huynh D, Moschetta M, Sacco A, Aljawai Y, Mishima Y, Asara JM, Roccaro AM, Kimmelman AC, Ghobrial IM (2015) Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res 75(10):2071–2082. doi: 10.1158/0008-5472.CAN-14-3400 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N, Gronthos S, Harris AL, Zannettino AC (2010) Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 95(5):776–784. doi: 10.3324/haematol.2009.015628 PubMedCrossRefGoogle Scholar
  41. 41.
    Tagde A, Rajabi H, Bouillez A, Alam M, Gali R, Bailey S, Tai YT, Hideshima T, Anderson K, Avigan D, Kufe D (2016) MUC1-C drives MYC in multiple myeloma. Blood 127(21):2587–2597. doi: 10.1182/blood-2015-07-659151 PubMedCrossRefGoogle Scholar
  42. 42.
    Salem K, McCormick ML, Wendlandt E, Zhan F, Goel A (2015) Copper–zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Redox Biol 4:23–33. doi: 10.1016/j.redox.2014.11.002 PubMedCrossRefGoogle Scholar
  43. 43.
    He XY, Liu BY, Yao WY, Zhao XJ, Zheng Z, Li JF, Yu BQ, Yuan YZ (2011) Serum DJ-1 as a diagnostic marker and prognostic factor for pancreatic cancer. J Dig Dis 12(2):131–137. doi: 10.1111/j.1751-2980.2011.00488.x PubMedCrossRefGoogle Scholar
  44. 44.
    Zhu XL, Wang ZF, Lei WB, Zhuang HW, Jiang HY, Wen WP (2010) DJ-1: a novel independent prognostic marker for survival in glottic squamous cell carcinoma. Cancer Sci 101(5):1320–1325. doi: 10.1111/j.1349-7006.2010.01531.x PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu XL, Wang ZF, Lei WB, Zhuang HW, Hou WJ, Wen YH, Wen WP (2012) Tumorigenesis role and clinical significance of DJ-1, a negative regulator of PTEN, in supraglottic squamous cell carcinoma. J Exp Clin Cancer Res 31:94. doi: 10.1186/1756-9966-31-94 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wang B, Qin H, Wang Y, Chen W, Luo J, Zhu X, Wen W, Lei W (2014) Effect of DJ-1 overexpression on the proliferation, apoptosis, invasion and migration of laryngeal squamous cell carcinoma SNU-46 cells through PI3K/AKT/mTOR. Oncol Rep 32(3):1108–1116. doi: 10.3892/or.2014.3286 PubMedGoogle Scholar
  47. 47.
    Steinhart L, Belz K, Fulda S (2013) Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis 4:e802. doi: 10.1038/cddis.2013.320 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chromik J, Safferthal C, Serve H, Fulda S (2014) Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Lett 344(1):101–109. doi: 10.1016/j.canlet.2013.10.018 PubMedCrossRefGoogle Scholar
  49. 49.
    Xuan Y, Hu X (2009) Naturally-occurring shikonin analogues: a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274(2):233–242. doi: 10.1016/j.canlet.2008.09.029 PubMedCrossRefGoogle Scholar
  50. 50.
    Wada N, Kawano Y, Fujiwara S, Kikukawa Y, Okuno Y, Tasaki M, Ueda M, Ando Y, Yoshinaga K, Ri M, Iida S, Nakashima T, Shiotsu Y, Mitsuya H, Hata H (2015) Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. Int J Oncol 46(3):963–972. doi: 10.3892/ijo.2014.2804 PubMedGoogle Scholar
  51. 51.
    McNally RS, Davis BK, Clements CM, Accavitti-Loper MA, Mak TW, Ting JP (2011) DJ-1 enhances cell survival through the binding of Cezanne, a negative regulator of NF-kappaB. J Biol Chem 286(6):4098–4106. doi: 10.1074/jbc.M110.147371 PubMedCrossRefGoogle Scholar
  52. 52.
    Mannava S, Zhuang D, Nair JR, Bansal R, Wawrzyniak JA, Zucker SN, Fink EE, Moparthy KC, Hu Q, Liu S, Boise LH, Lee KP, Nikiforov MA (2012) KLF9 is a novel transcriptional regulator of bortezomib- and LBH589-induced apoptosis in multiple myeloma cells. Blood 119(6):1450–1458. doi: 10.1182/blood-2011-04-346676 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cheng XF, Li D, Zhuang M, Chen ZY, Lu DX, Hattori T (2008) Growth inhibitory effect of Kruppel-like factor 6 on human prostatic carcinoma and renal carcinoma cell lines. Tohoku J Exp Med 216(1):35–45PubMedCrossRefGoogle Scholar
  54. 54.
    Sangodkar J, Shi J, DiFeo A, Schwartz R, Bromberg R, Choudhri A, McClinch K, Hatami R, Scheer E, Kremer-Tal S, Martignetti JA, Hui A, Leung WK, Friedman SL, Narla G (2009) Functional role of the KLF6 tumour suppressor gene in gastric cancer. Eur J Cancer 45(4):666–676. doi: 10.1016/j.ejca.2008.11.009 PubMedCrossRefGoogle Scholar
  55. 55.
    Ussat S, Werner UE, Kruse ML, Luschen S, Scherer G, Kabelitz D, Adam-Klages S (2002) Upregulation of p21(WAF1/Cip1) precedes tumor necrosis factor-induced necrosis-like cell death. Biochem Biophys Res Commun 294(3):672–679. doi: 10.1016/S0006-291X(02)00532-6 PubMedCrossRefGoogle Scholar
  56. 56.
    Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP (2006) DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A 103(41):15091–15096. doi: 10.1073/pnas.0607260103 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Shinbo Y, Taira T, Niki T, Iguchi-Ariga SM, Ariga H (2005) DJ-1 restores p53 transcription activity inhibited by Topors/p53BP3. Int J Oncol 26(3):641–648PubMedGoogle Scholar
  58. 58.
    Nerini-Molteni S, Ferrarini M, Cozza S, Caligaris-Cappio F, Sitia R (2008) Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib. Br J Haematol 141(4):494–503. doi: 10.1111/j.1365-2141.2008.07066.x PubMedCrossRefGoogle Scholar
  59. 59.
    Tagde A, Singh H, Kang MH, Reynolds CP (2014) The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma. Blood. Cancer J 4:e229. doi: 10.1038/bcj.2014.45 Google Scholar
  60. 60.
    Giuntoli S, Rovida E, Barbetti V, Cipolleschi MG, Olivotto M, Dello Sbarba P (2006) Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations. Leukemia 20(7):1291–1293. doi: 10.1038/sj.leu.2404224 PubMedCrossRefGoogle Scholar
  61. 61.
    Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, Thompson B, Maiso P, Sun JD, Hart CP, Roccaro AM, Sacco A, Ngo HT, Lin CP, Kung AL, Carrasco RD, Vanderkerken K, Ghobrial IM (2012) Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 119(24):5782–5794. doi: 10.1182/blood-2011-09-380410 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Martin SK, Diamond P, Gronthos S, Peet DJ, Zannettino AC (2011) The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 25(10):1533–1542. doi: 10.1038/leu.2011.122 PubMedCrossRefGoogle Scholar
  63. 63.
    Borsi E, Terragna C, Brioli A, Tacchetti P, Martello M, Cavo M (2015) Therapeutic targeting of hypoxia and hypoxia-inducible factor 1 alpha in multiple myeloma. Transl Res 165(6):641–650. doi: 10.1016/j.trsl.2014.12.001 PubMedCrossRefGoogle Scholar
  64. 64.
    Kim YC, Kitaura H, Iguchi-Ariga SM, Ariga H (2010) DJ-1, an oncogene and causative gene for familial Parkinson’s disease, is essential for SV40 transformation in mouse fibroblasts through up-regulation of c-Myc. FEBS Lett 584(18):3891–3895. doi: 10.1016/j.febslet.2010.08.010 PubMedCrossRefGoogle Scholar
  65. 65.
    Doe MR, Ascano JM, Kaur M, Cole MD (2012) Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res 72(4):949–957. doi: 10.1158/0008-5472.CAN-11-2371 PubMedCrossRefGoogle Scholar
  66. 66.
    Koh MY, Spivak-Kroizman TR, Powis G (2010) HIF-1alpha and cancer therapy. Recent Results Cancer Res 180:15–34. doi: 10.1007/978-3-540-78281-0_3 PubMedCrossRefGoogle Scholar
  67. 67.
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259. doi: 10.1126/science.1077209 PubMedCrossRefGoogle Scholar
  68. 68.
    Grufferman S, Cohen HJ, Delzell ES, Morrison MC, Schold SC Jr, Moore JO (1989) Familial aggregation of multiple myeloma and central nervous system diseases. J Am Geriatr Soc 37(4):303–309PubMedCrossRefGoogle Scholar
  69. 69.
    Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236PubMedPubMedCentralGoogle Scholar
  70. 70.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95. doi: 10.1038/nrc2981 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Prahlad V. Raninga
    • 1
    • 2
  • Giovanna Di Trapani
    • 1
  • Slavica Vuckovic
    • 3
    • 4
  • Kathryn F. Tonissen
    • 1
    • 2
    Email author
  1. 1.School of Natural SciencesGriffith UniversityBrisbaneAustralia
  2. 2.Eskitis Institute for Drug DiscoveryGriffith UniversityNathanAustralia
  3. 3.QIMR Berghofer Medical Research InstituteHerstonAustralia
  4. 4.School of MedicineUniversity of QueenslandHerstonAustralia

Personalised recommendations