, Volume 21, Issue 11, pp 1265–1278 | Cite as

Targeting Nrf2 with wogonin overcomes cisplatin resistance in head and neck cancer

  • Eun Hye Kim
  • Hyejin Jang
  • Daiha Shin
  • Seung Ho Baek
  • Jong-Lyel RohEmail author


A principal limitation to the clinical use of cisplatin is the high incidence of chemoresistance to this drug. Combination treatments with other drugs may help to circumvent this problem. Wogonin, one of the major natural flavonoids, is known to reverse multidrug resistance in several types of cancers. We investigated the ability of wogonin to overcome cisplatin resistance in head and neck cancer (HNC) cells and further clarified its molecular mechanisms of action. Two cisplatin-resistant HNC cell lines (AMC-HN4R and -HN9R) and their parental and other human HNC cell lines were used. The effects of wogonin, either alone or in combination with cisplatin, were assessed in HNC cells and normal cells using cell cycle and death assays and by measuring cell viability, reactive oxygen species (ROS) production, and protein expression, and in tumor xenograft mouse models. Wogonin selectively killed HNC cells but spared normal cells. It inhibited nuclear factor erythroid 2-related factor 2 and glutathione S-transferase P in cisplatin-resistant HNC cells, resulting in increased ROS accumulation in HNC cells, an effect that could be blocked by the antioxidant N-acetyl-l-cysteine. Wogonin also induced selective cell death by targeting the antioxidant defense mechanisms enhanced in the resistant HNC cells and activating cell death pathways involving PUMA and PARP. Hence, wogonin significantly sensitized resistant HNC cells to cisplatin both in vitro and in vivo. Wogonin is a promising anticancer candidate that induces ROS accumulation and selective cytotoxicity in HNC cells and can help to overcome cisplatin-resistance in this cancer.


Head and neck cancer Cisplatin resistance Wogonin Reactive oxygen species Cell death 



Head and neck cancer


Nf-E2-related factor 2


Antioxidant response element


Reactive oxygen species






Glutathione disulfide


2′,7′-Dichlorofluorescein diacetate


Poly(ADP-ribose) polymerase


c-Jun N-terminal kinase


Glutathione S-transferase pi 1


Short interfering RNA


Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling.



This study was supported by a Grant (No. 2015R1A2A1A15054540) from Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Science, ICT, and Future Planning, and a Grant (No. HI15C2920) from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), Ministry of Health & Welfare, Seoul, Republic of Korea (J.-L. Roh).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10495_2016_1284_MOESM1_ESM.tif (3.2 mb)
Supplementary Material 1 (TIFF 3290 kb)


  1. 1.
    Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O et al (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883. doi: 10.1038/onc.2011.384 CrossRefPubMedGoogle Scholar
  2. 2.
    Haddad RI, Shin DM (2008) Recent advances in head and neck cancer. N Engl J Med 359:1143–1154. doi: 10.1056/NEJMra0707975 CrossRefPubMedGoogle Scholar
  3. 3.
    Petrelli F, Coinu A, Riboldi V, Borgonovo K, Ghilardi M, Cabiddu M et al (2014) Concomitant platinum-based chemotherapy or cetuximab with radiotherapy for locally advanced head and neck cancer: a systematic review and meta-analysis of published studies. Oral Oncol 50:1041–1048. doi: 10.1016/j.oraloncology.2014.08.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Kong M, Hong SE (2015) Tumor regression patterns based on follow-up duration in patients with head and neck squamous cell carcinoma treated with radiotherapy or chemoradiotherapy. Clin Exp Otorhinolaryngol 8:416–421. doi: 10.3342/ceo.2015.8.4.416 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. doi: 10.1016/j.ejphar.2014.07.025 CrossRefPubMedGoogle Scholar
  6. 6.
    Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12:564–571. doi: 10.1038/nrc3278 CrossRefPubMedGoogle Scholar
  7. 7.
    Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322CrossRefPubMedGoogle Scholar
  8. 8.
    McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI et al (2001) The Cap’n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61:3299–3307PubMedGoogle Scholar
  9. 9.
    Cho JM, Manandhar S, Lee HR, Park HM, Kwak MK (2008) Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett 260:96–108. doi: 10.1016/j.canlet.2007.10.022 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y et al (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–1243. doi: 10.1093/carcin/bgn095 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N et al (2009) Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 15:3423–3432. doi: 10.1158/1078-0432.ccr-08-2822 CrossRefPubMedGoogle Scholar
  12. 12.
    Higgins LG, Kelleher MO, Eggleston IM, Itoh K, Yamamoto M, Hayes JD (2009) Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents. Toxicol Appl Pharmacol 237:267–280. doi: 10.1016/j.taap.2009.03.005 CrossRefPubMedGoogle Scholar
  13. 13.
    Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat Rev 35:57–68. doi: 10.1016/j.ctrv.2008.09.005 CrossRefPubMedGoogle Scholar
  14. 14.
    Himeji M, Ohtsuki T, Fukazawa H, Tanaka M, Yazaki S, Ui S et al (2007) Difference of growth-inhibitory effect of Scutellaria baicalensis-producing flavonoid wogonin among human cancer cells and normal diploid cell. Cancer Lett 245:269–274. doi: 10.1016/j.canlet.2006.01.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Chow JM, Huang GC, Shen SC, Wu CY, Lin CW, Chen YC (2008) Differential apoptotic effect of wogonin and nor-wogonin via stimulation of ROS production in human leukemia cells. J Cell Biochem 103:1394–1404. doi: 10.1002/jcb.21528 CrossRefPubMedGoogle Scholar
  16. 16.
    Tsai CF, Yeh WL, Huang SM, Tan TW, Lu DY (2012) Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 13:9877–9892. doi: 10.3390/ijms13089877 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhong Y, Zhang F, Sun Z, Zhou W, Li ZY, You QD et al (2013) Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response. Mol Carcinog 52:824–834. doi: 10.1002/mc.21921 CrossRefPubMedGoogle Scholar
  18. 18.
    Qian C, Wang Y, Zhong Y, Tang J, Zhang J, Li Z et al (2014) Wogonin-enhanced reactive oxygen species-induced apoptosis and potentiated cytotoxic effects of chemotherapeutic agents by suppression Nrf2-mediated signaling in HepG2 cells. Free Radic Res 48:607–621. doi: 10.3109/10715762.2014.897342 CrossRefPubMedGoogle Scholar
  19. 19.
    Lee E, Enomoto R, Koshiba C, Hirano H (2009) Inhibition of P-glycoprotein by wogonin is involved with the potentiation of etoposide-induced apoptosis in cancer cells. Ann N Y Acad Sci 1171:132–136. doi: 10.1111/j.1749-6632.2009.04722.x CrossRefPubMedGoogle Scholar
  20. 20.
    Nakamura M, Nakatani K, Uzawa K, Ono K, Uesugi H, Ogawara K et al (2005) Establishment and characterization of a cisplatin-resistant oral squamous cell carcinoma cell line, H-1R. Oncol Rep 14:1281–1286PubMedGoogle Scholar
  21. 21.
    Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446. doi: 10.1158/0008-5472.can-09-1947 CrossRefPubMedGoogle Scholar
  22. 22.
    Lii CK, Liu KL, Cheng YP, Lin AH, Chen HW, Tsai CW (2010) Sulforaphane and alpha-lipoic acid upregulate the expression of the pi class of glutathione S-transferase through c-jun and Nrf2 activation. J Nutr 140:885–892. doi: 10.3945/jn.110.121418 CrossRefPubMedGoogle Scholar
  23. 23.
    Lin AH, Chen HW, Liu CT, Tsai CW, Lii CK (2012) Activation of Nrf2 is required for up-regulation of the pi class of glutathione S-transferase in rat primary hepatocytes with l-methionine starvation. J Agric Food Chem 60:6537–6545. doi: 10.1021/jf301567m CrossRefPubMedGoogle Scholar
  24. 24.
    Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD et al (1999) Regulation of JNK signaling by GSTp. Embo J 18:1321–1334. doi: 10.1093/emboj/18.5.1321 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang T, Arifoglu P, Ronai Z, Tew KD (2001) Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem 276:20999–21003. doi: 10.1074/jbc.M101355200 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang S, Lin Y, Kim YS, Hande MP, Liu ZG, Shen HM (2007) c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death Differ 14:1001–1010. doi: 10.1038/sj.cdd.4402088 CrossRefPubMedGoogle Scholar
  27. 27.
    Xu Y, Huang S, Liu ZG, Han J (2006) Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281:8788–8795. doi: 10.1074/jbc.M508135200 CrossRefPubMedGoogle Scholar
  28. 28.
    Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837. doi: 10.1016/j.cell.2009.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173. doi: 10.1016/j.tcb.2008.01.006 CrossRefPubMedGoogle Scholar
  30. 30.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783. doi: 10.1038/nature07733 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234. doi: 10.1038/nature10167 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947. doi: 10.1038/nrd4002 CrossRefPubMedGoogle Scholar
  33. 33.
    Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY et al (2010) Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220:446–451. doi: 10.1002/path.2653 CrossRefPubMedGoogle Scholar
  34. 34.
    Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA et al (2010) Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res 16:3743–3753. doi: 10.1158/1078-0432.ccr-09-3352 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Stacy DR, Ely K, Massion PP, Yarbrough WG, Hallahan DE, Sekhar KR et al (2006) Increased expression of nuclear factor E2 p45-related factor 2 (NRF2) in head and neck squamous cell carcinomas. Head Neck 28:813–818. doi: 10.1002/hed.20430 CrossRefPubMedGoogle Scholar
  36. 36.
    Ohkoshi A, Suzuki T, Ono M, Kobayashi T, Yamamoto M (2013) Roles of Keap1-Nrf2 system in upper aerodigestive tract carcinogenesis. Cancer Prev Res (Phila) 6:149–159. doi: 10.1158/1940-6207.capr-12-0401-t CrossRefGoogle Scholar
  37. 37.
    Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13:1713–1748. doi: 10.1089/ars.2010.3221 CrossRefPubMedGoogle Scholar
  38. 38.
    Huang CF, Zhang L, Ma SR, Zhao ZL, Wang WM, He KF et al (2013) Clinical significance of Keap1 and Nrf2 in oral squamous cell carcinoma. PLoS One 8:e83479. doi: 10.1371/journal.pone.0083479 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jiang T, Chen N, Zhao F, Wang XJ, Kong B, Zheng W et al (2010) High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res 70:5486–5496. doi: 10.1158/0008-5472.can-10-0713 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chen HH, Kuo MT (2010) Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy. Met Based Drugs. doi: 10.1155/2010/430939 Google Scholar
  41. 41.
    Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874CrossRefPubMedGoogle Scholar
  42. 42.
    Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A (2013) p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 20:1465–1474. doi: 10.1038/cdd.2013.52 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Eun Hye Kim
    • 1
  • Hyejin Jang
    • 1
  • Daiha Shin
    • 1
  • Seung Ho Baek
    • 1
  • Jong-Lyel Roh
    • 1
    Email author
  1. 1.Department of Otolaryngology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea

Personalised recommendations