, Volume 21, Issue 8, pp 887–895 | Cite as

Canstatin inhibits isoproterenol-induced apoptosis through preserving mitochondrial morphology in differentiated H9c2 cardiomyoblasts

  • Muneyoshi OkadaEmail author
  • Suiri Morioka
  • Hiroki Kanazawa
  • Hideyuki Yamawaki


Canstatin, a non-collagenous fragment, is cleaved from type IV collagen α2 chain, an essential component of basement membrane surrounding cardiomyocytes. Although canstatin is known as an endogenous anti-angiogenic factor, its effects on cardiomyocytes have not been clarified. This study examined the effects of canstatin on isoproterenol-induced apoptosis in differentiated H9c2 cardiomyoblasts. Retinoic acid was used to differentiate H9c2 myoblast to cardiomyocyte-like phenotype. Cell viability was determined by a cell counting assay. Western blotting was performed to detect expression of cleaved casepase-3 and phosphorylation of dynamin related protein (Drp)1 at Ser637 which regulates mitochondrial fission. Mito Sox Red staining was performed to examine a mitochondria-dependent production of reactive oxygen species (ROS). Mitochondrial morphology was detected by Mito Tracker Red staining. Isoproterenol (100 μM, 48 h) significantly decreased cell viability and increased cleaved caspase-3 expression, which were inhibited by canstatin (10–250 ng/ml) in a concentration-dependent manner. Canstatin suppressed the isoproterenol-induced mitochondrial fission but not ROS. Canstatin also inhibited the isoproterenol-induced dephosphorylation of Drp1 at Ser637. In conclusion, canstatin inhibits isoproterenol-induced apoptosis through the inhibition of mitochondrial fission via the suppression of dephosphorylation of Drp1 at Ser637 in differentiated H9c2 cardiomyoblasts.


Apoptosis Canstatin Dynamin related protein 1 Isoproterenol Mitochondrial fission 



Dulbecco’s modified Eagle’s Medium


Dynamin related protein 1


Nuclear factor of activated T-cells


Phosphatidylinositol 3-kinase


Reactive oxygen species


Standard error of the mean



This research was supported by Kitasato University Research Grant for Young Researchers and JSPS KAKENHI Grant Number 24780289 (Grant-in-Aid for Young Scientists B).


  1. 1.
    Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621CrossRefPubMedGoogle Scholar
  2. 2.
    Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753CrossRefPubMedGoogle Scholar
  3. 3.
    Parati G, Esler M (2012) The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 33:1058–1066CrossRefPubMedGoogle Scholar
  4. 4.
    Wang Y, Seto SW, Golledge J (2014) Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Fail Rev 19:187–198CrossRefPubMedGoogle Scholar
  5. 5.
    Amin P, Singh M, Singh K (2011) Beta-adrenergic receptor-stimulated cardiac myocyte apoptosis: role of beta1 integrins. J Signal Transduct 2011:179057CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Choudhary R, Mishra KP, Subramanyam C (2006) Interrelations between oxidative stress and calcineurin in the attenuation of cardiac apoptosis by eugenol. Mol Cell Biochem 283:115–122CrossRefPubMedGoogle Scholar
  7. 7.
    Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334CrossRefPubMedGoogle Scholar
  8. 8.
    Menon B, Singh M, Ross RS, Johnson JN, Singh K (2006) beta-Adrenergic receptor-stimulated apoptosis in adult cardiac myocytes involves MMP-2-mediated disruption of beta1 integrin signaling and mitochondrial pathway. Am J Physiol Cell Physiol 290:C254–C261CrossRefPubMedGoogle Scholar
  9. 9.
    Remondino A, Kwon SH, Communal C et al (2003) Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92:136–138CrossRefPubMedGoogle Scholar
  10. 10.
    Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS (2001) Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189:257–265CrossRefPubMedGoogle Scholar
  11. 11.
    Hudson BG, Reeders ST, Tryggvason K (1993) Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 268:26033–26036PubMedGoogle Scholar
  12. 12.
    Kuhn K (1995) Basement membrane (type IV) collagen. Matrix Biol 14:439–445CrossRefPubMedGoogle Scholar
  13. 13.
    Pasco S, Brassart B, Ramont L, Maquart FX, Monboisse JC (2005) Control of melanoma cell invasion by type IV collagen. Cancer Detect Prev 29:260–266CrossRefPubMedGoogle Scholar
  14. 14.
    Shamhart PE, Meszaros JG (2010) Non-fibrillar collagens: key mediators of post-infarction cardiac remodeling? J Mol Cell Cardiol 48:530–537CrossRefPubMedGoogle Scholar
  15. 15.
    Watanabe T, Kusachi S, Yamanishi A et al (1998) Localization of type IV collagen alpha chain in the myocardium of dilated and hypertrophic cardiomyopathy. Jpn Heart J 39:753–762CrossRefPubMedGoogle Scholar
  16. 16.
    Yamanishi A, Kusachi S, Nakahama M et al (1998) Sequential changes in the localization of the type IV collagen alpha chain in the infarct zone: immunohistochemical study of experimental myocardial infarction in the rat. Pathol Res Pract 194:413–422CrossRefPubMedGoogle Scholar
  17. 17.
    He GA, Luo JX, Zhang TY, Wang FY, Li RF (2003) Canstatin-N fragment inhibits in vitro endothelial cell proliferation and suppresses in vivo tumor growth. Biochem Biophys Res Commun 312:801–805CrossRefPubMedGoogle Scholar
  18. 18.
    He GA, Luo JX, Zhang TY, Hu ZS, Wang FY (2004) The C-terminal domain of canstatin suppresses in vivo tumor growth associated with proliferation of endothelial cells. Biochem Biophys Res Commun 318:354–360CrossRefPubMedGoogle Scholar
  19. 19.
    Kamphaus GD, Colorado PC, Panka DJ et al (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275:1209–1215CrossRefPubMedGoogle Scholar
  20. 20.
    Magnon C, Galaup A, Mullan B et al (2005) Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alphavbeta3 and alphavbeta5 integrins. Cancer Res 65:4353–4361CrossRefPubMedGoogle Scholar
  21. 21.
    Mundel TM, Kalluri R (2007) Type IV collagen-derived angiogenesis inhibitors. Microvasc Res 74:85–89CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Panka DJ, Mier JW (2003) Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells. J Biol Chem 278:37632–37636CrossRefPubMedGoogle Scholar
  23. 23.
    Shewchuk LJ, Bryan S, Ulanova M, Khaper N (2010) Integrin beta3 prevents apoptosis of HL-1 cardiomyocytes under conditions of oxidative stress. Can J Physiol Pharmacol 88:324–330CrossRefPubMedGoogle Scholar
  24. 24.
    Comelli M, Domenis R, Bisetto E et al (2011) Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts. Mitochondrion 11:315–326CrossRefPubMedGoogle Scholar
  25. 25.
    Menard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P (1999) Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. J Biol Chem 274:29063–29070CrossRefPubMedGoogle Scholar
  26. 26.
    Branco AF, Sampaio SF, Wieckowski MR, Sardao VA, Oliveira PJ (2013) Mitochondrial disruption occurs downstream from beta-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: differential activation of stress and survival pathways. Int J Biochem Cell Biol 45:2379–2391CrossRefPubMedGoogle Scholar
  27. 27.
    Okada M, Oba Y, Yamawaki H (2015) Endostatin stimulates proliferation and migration of adult rat cardiac fibroblasts through PI3K/Akt pathway. Eur J Pharmacol 750:20–26CrossRefPubMedGoogle Scholar
  28. 28.
    Kazama K, Okada M, Yamawaki H (2015) Adipocytokine, omentin inhibits doxorubicin-induced H9c2 cardiomyoblasts apoptosis through the inhibition of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 457:602–607CrossRefPubMedGoogle Scholar
  29. 29.
    Morita T, Okada M, Hara Y, Yamawaki H (2013) Addition of adult serum improves endothelium-dependent relaxation of organ-cultured rat mesenteric artery via inhibiting mitochondrial reactive oxygen species. Vascul Pharmacol 58:105–111CrossRefPubMedGoogle Scholar
  30. 30.
    Cereghetti GM, Stangherlin A, Martins de Brito O et al (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105:15803–15808CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Somvanshi RK, Zou S, Qiu X, Kumar U (2014) Somatostatin receptor-2 negatively regulates beta-adrenergic receptor mediated Ca(2 +) dependent signaling pathways in H9c2 cells. Biochim Biophys Acta 1843:735–745CrossRefPubMedGoogle Scholar
  32. 32.
    Sata M, Walsh K (1998) TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat Med 4:415–420CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sata M, Suhara T, Walsh K (2000) Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol 20:309–316CrossRefPubMedGoogle Scholar
  34. 34.
    Feng QZ, Zhao YS, Abdelwahid E (2008) The role of Fas in the progression of ischemic heart failure: prohypertrophy or proapoptosis. Coron Artery Dis 19:527–534CrossRefPubMedGoogle Scholar
  35. 35.
    Lu F, Xing J, Zhang X et al (2013) Exogenous hydrogen sulfide prevents cardiomyocyte apoptosis from cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 381:41–50CrossRefPubMedGoogle Scholar
  36. 36.
    Adams JW, Pagel AL, Means CK, Oksenberg D, Armstrong RC, Brown JH (2000) Cardiomyocyte apoptosis induced by Galphaq signaling is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. Circ Res 87:1180–1187CrossRefPubMedGoogle Scholar
  37. 37.
    Xu G, Ahn J, Chang S et al (2012) Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. J Biol Chem 287:4808–4817CrossRefPubMedGoogle Scholar
  38. 38.
    Cosentino K, Garcia-Saez AJ (2014) Mitochondrial alterations in apoptosis. Chem Phys Lipids 181:62–75CrossRefPubMedGoogle Scholar
  39. 39.
    Dorn GW 2nd (2015) Mitochondrial dynamism and heart disease: changing shape and shaping change. EMBO Mol Med 7:865–877CrossRefPubMedGoogle Scholar
  40. 40.
    Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hall AR, Burke N, Dongworth RK, Hausenloy DJ (2014) Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 171:1890–1906CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Otera H, Mihara K (2012) Mitochondrial dynamics: functional link with apoptosis. Int J Cell Biol 2012:821676CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zaja I, Bai X, Liu Y et al (2014) Cdk1, PKCdelta and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death. Biochem Biophys Res Commun 453:710–721CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341–351CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sheridan C, Martin SJ (2010) Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 10:640–648CrossRefPubMedGoogle Scholar
  46. 46.
    Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Saito S, Hiroi Y, Zou Y et al (2000) beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275:34528–34533CrossRefPubMedGoogle Scholar
  48. 48.
    Belkin AM, Stepp MA (2000) Integrins as receptors for laminins. Microsc Res Tech 51:280–301CrossRefPubMedGoogle Scholar
  49. 49.
    Wang YG, Ji X, Pabbidi M, Samarel AM, Lipsius SL (2009) Laminin acts via focal adhesion kinase/phosphatidylinositol-3′ kinase/protein kinase B to down-regulate beta1-adrenergic receptor signalling in cat atrial myocytes. J Physiol 587:541–550CrossRefPubMedGoogle Scholar
  50. 50.
    Ortega N, Werb Z (2002) New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 115:4201–4214CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yasuda J, Takada L, Kajiwara Y, Okada M, Yamawaki H (2015) Endostatin inhibits bradykinin-induced cardiac contraction. J Vet Med Sci 77:1391–1395CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Baskin KK, Rodriguez MR, Kansara S et al (2014) MAFbx/Atrogin-1 is required for atrophic remodeling of the unloaded heart. J Mol Cell Cardiol 72:168–176CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yamamoto Y, Hoshino Y, Ito T et al (2008) Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovasc Res 79:89–96CrossRefPubMedGoogle Scholar
  54. 54.
    Ni YG, Berenji K, Wang N et al (2006) Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 114:1159–1168CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Muneyoshi Okada
    • 1
    Email author
  • Suiri Morioka
    • 1
  • Hiroki Kanazawa
    • 1
  • Hideyuki Yamawaki
    • 1
  1. 1.Laboratory of Veterinary Pharmacology, School of Veterinary MedicineKitasato UniversityTowada, AomoriJapan

Personalised recommendations