, Volume 21, Issue 8, pp 905–916 | Cite as

SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury

  • Yedong Cheng
  • Shouyin Di
  • Chongxi Fan
  • Liping Cai
  • Chao Gao
  • Peng Jiang
  • Wei Hu
  • Zhiqiang Ma
  • Shuai Jiang
  • Yushu Dong
  • Tian Li
  • Guiling Wu
  • Jianjun Lv
  • Yang Yang


Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague–Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells.


Pterostilbene Skeletal muscle Ischemia reperfusion injury Silent information regulator 1 Mitochondrial function 



This work was supported by National Natural Science Foundation of China (81500263) and China Postdoctoral Science Foundation (2015M572681).

Compliance with ethical standards

Conflicts of interest

The authors declare no competing financial interests.


  1. 1.
    McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163CrossRefPubMedGoogle Scholar
  2. 2.
    Yilmaz G, Granger DN (2010) Leukocyte recruitment and ischemic brain injury. Neuromolecular Med 12:193–204CrossRefPubMedGoogle Scholar
  3. 3.
    Yan H, Zhang F, Kochevar AJ, Akdemir O, Gao W, Angel M (2010) The effect of postconditioning on the muscle flap survival after ischemia-reperfusion injury in rats. J Invest Surg 23:249–256CrossRefPubMedGoogle Scholar
  4. 4.
    Huang T, Wang W, Tu C, Yang Z, Bramwell D, Sun X (2015) Hydrogen-rich saline attenuates ischemia-reperfusion injury in skeletal muscle. J Surg Res 194:471–480CrossRefPubMedGoogle Scholar
  5. 5.
    Ikizler M, Ovali C, Dernek S, Erkasap N, Sevin B, Kaygisiz Z et al (2006) Protective effects of resveratrol in ischemia-reperfusion injury of skeletal muscle: a clinically relevant animal model for lower extremity ischemia. Chin J Physiol 49:204–209PubMedGoogle Scholar
  6. 6.
    Elmali N, Esenkaya I, Karadag N, Tas F (2007) Effects of resveratrol on skeletal muscle in ischemia-reperfusion injury. Ulus Travma Acil Cerrahi Derg 13:274–280PubMedGoogle Scholar
  7. 7.
    Bank J, Song DH (2013) Curcumin protects against ischemia/reperfusion injury in rat skeletal muscle. J Surg Res 179:49–51CrossRefPubMedGoogle Scholar
  8. 8.
    Estrela JM, Ortega A, Mena S, Rodriguez ML, Asensi M (2013) Pterostilbene: biomedical applications. Crit Rev Clin Lab Sci 50:65–78CrossRefPubMedGoogle Scholar
  9. 9.
    McCormack D, McFadden D (2013) A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longev 2013:575482CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bhakkiyalakshmi E, Shalini D, Sekar TV, Rajaguru P, Paulmurugan R, Ramkumar KM (2014) Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2. Br J Pharmacol 171:1747–1757CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang L, Zhou G, Song W, Tan X, Guo Y, Zhou B et al (2012) Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo. Apoptosis 17:25–36CrossRefPubMedGoogle Scholar
  12. 12.
    Perecko T, Drabikova K, Rackova L, Ciz M, Podborska M, Lojek A et al (2010) Molecular targets of the natural antioxidant pterostilbene: effect on protein kinase C, caspase-3 and apoptosis in human neutrophils in vitro. Neuro Endocrinol Lett 31(Suppl 2):84–90PubMedGoogle Scholar
  13. 13.
    Yang Y, Yan X, Duan W, Yan J, Yi W, Liang Z et al (2013) Pterostilbene exerts antitumor activity via the Notch1 signaling pathway in human lung adenocarcinoma cells. PLoS ONE 8:e62652CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fan C, Pan Y, Yang Y, Di S, Jiang S, Ma Z et al (2015) HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways. J Pineal Res 59(3):321–333CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou Y, Zhang XM, Ma A, Zhang YL, Chen YY, Zhou H et al (2015) Orally administrated pterostilbene attenuates acute cerebral ischemia-reperfusion injury in a dose- and time-dependent manner in mice. Pharmacol Biochem Behav 135:199–209CrossRefPubMedGoogle Scholar
  16. 16.
    Lv M, Liu K, Fu S, Li Z, Yu X (2015) Pterostilbene attenuates the inflammatory reaction induced by ischemia/reperfusion in rat heart. Mol Med Rep 11:724–728PubMedGoogle Scholar
  17. 17.
    Chalkiadaki A, Guarente L (2015) The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15:608–624CrossRefPubMedGoogle Scholar
  18. 18.
    Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO et al (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92:1479–1514CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N et al (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Han D, Huang W, Li X, Gao L, Su T, Li X et al (2016) Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. J Pineal Res 60:178–192CrossRefPubMedGoogle Scholar
  21. 21.
    Sin TK, Yung BY, Siu PM (2015) Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance. Cell Physiol Biochem 35:541–552CrossRefPubMedGoogle Scholar
  22. 22.
    Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, Tailleux A et al (2015) The Sirt1 activator SRT3025 provides atheroprotection in Apoe−/− mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J 36:51–59CrossRefPubMedGoogle Scholar
  23. 23.
    Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M et al (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sin TK, Yu AP, Yung BY, Yip SP, Chan LW, Wong CS et al (2015) Effects of long-term resveratrol-induced SIRT1 activation on insulin and apoptotic signalling in aged skeletal muscle. Acta Diabetol 52:1063–1075CrossRefPubMedGoogle Scholar
  25. 25.
    Pantazi E, Zaouali MA, Bejaoui M, Folch-Puy E, Ben Abdennebi H, Varela AT et al (2015) Sirtuin 1 in rat orthotopic liver transplantation: an IGL-1 preservation solution approach. World J Gastroenterol 21:1765–1774CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J et al (2013) SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med 65:667–679CrossRefPubMedGoogle Scholar
  27. 27.
    Wang W, Yan C, Zhang J, Lin R, Lin Q, Yang L et al (2013) SIRT1 inhibits TNF-alpha-induced apoptosis of vascular adventitial fibroblasts partly through the deacetylation of FoxO1. Apoptosis 18:689–701CrossRefPubMedGoogle Scholar
  28. 28.
    Sin TK, Yu AP, Yung BY, Yip SP, Chan LW, Wong CS et al (2014) Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart. J Physiol 592:2535–2548CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yan H, Jihong Y, Feng Z, Xiaomei X, Xiaohan Z, Guangzhi W et al (2014) Sirtuin 1-mediated inhibition of p66shc expression alleviates liver ischemia/reperfusion injury. Crit Care Med 42:e373–e381CrossRefPubMedGoogle Scholar
  30. 30.
    Sundaresan NR, Pillai VB, Gupta MP (2011) Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J Mol Cell Cardiol 51:614–618CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C (2012) SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci 69:2245–2260CrossRefPubMedGoogle Scholar
  32. 32.
    Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M et al (2014) Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1. J Pineal Res 57:228–238CrossRefPubMedGoogle Scholar
  33. 33.
    Strock PE, Majno G (1969) Microvascular changes in acutely ischemic rat muscle. Surg Gynecol Obstet 129:1213–1224PubMedGoogle Scholar
  34. 34.
    Thaveau F, Zoll J, Bouitbir J, Ribera F, Di Marco P, Chakfe N et al (2009) Contralateral leg as a control during skeletal muscle ischemia-reperfusion. J Surg Res 155:65–69CrossRefPubMedGoogle Scholar
  35. 35.
    Talha S, Bouitbir J, Charles AL, Zoll J, Goette-Di Marco P, Meziani F et al (2013) Pretreatment with brain natriuretic peptide reduces skeletal muscle mitochondrial dysfunction and oxidative stress after ischemia-reperfusion. J Appl Physiol 114:172–179CrossRefPubMedGoogle Scholar
  36. 36.
    Su H, Ji L, Xing W, Zhang W, Zhou H, Qian X et al (2013) Acute hyperglycaemia enhances oxidative stress and aggravates myocardial ischaemia/reperfusion injury: role of thioredoxin-interacting protein. J Cell Mol Med 17:181–191CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liao YH, Xia N, Zhou SF, Tang TT, Yan XX, Lv BJ et al (2012) Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J Am Coll Cardiol 59:420–429CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Grootjans J, Hodin CM, de Haan JJ, Derikx JP, Rouschop KM, Verheyen FK et al (2011) Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology 140(529–539):e523Google Scholar
  39. 39.
    Brinks H, Boucher M, Gao E, Chuprun JK, Pesant S, Raake PW et al (2010) Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. Circ Res 107:1140–1149CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Emanueli C, Van Linthout S, Salis MB, Monopoli A, Del Soldato P, Ongini E et al (2004) Nitric oxide-releasing aspirin derivative, NCX 4016, promotes reparative angiogenesis and prevents apoptosis and oxidative stress in a mouse model of peripheral ischemia. Arterioscler Thromb Vasc Biol 24:2082–2087CrossRefPubMedGoogle Scholar
  41. 41.
    Kim HB, Lee SH, Um JH, Oh WK, Kim DW, Kang CD et al (2015) Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1. Oncotarget 6:36202–36218PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ma L, Zhao Y, Wang R, Chen T, Li W, Nan Y et al (2015) 3,5,4′-Tri-O-acetylresveratrol attenuates lipopolysaccharide-induced acute respiratory distress syndrome via MAPK/SIRT1 pathway. Mediators Inflamm 2015:143074PubMedPubMedCentralGoogle Scholar
  43. 43.
    Zeng Z, Chen Z, Xu S, Zhang Q, Wang X, Gao Y et al (2016) Polydatin protecting kidneys against hemorrhagic shock-induced mitochondrial dysfunction via SIRT1 activation and p53 deacetylation. Oxidative Med Cell longev 2016:1737185CrossRefGoogle Scholar
  44. 44.
    Pipinos II, Judge AR, Zhu Z, Selsby JT, Swanson SA, Johanning JM et al (2006) Mitochondrial defects and oxidative damage in patients with peripheral arterial disease. Free Radic Biol Med 41:262–269CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yedong Cheng
    • 1
    • 2
  • Shouyin Di
    • 3
  • Chongxi Fan
    • 3
  • Liping Cai
    • 1
  • Chao Gao
    • 1
  • Peng Jiang
    • 1
  • Wei Hu
    • 2
  • Zhiqiang Ma
    • 3
  • Shuai Jiang
    • 4
  • Yushu Dong
    • 5
  • Tian Li
    • 2
  • Guiling Wu
    • 2
  • Jianjun Lv
    • 2
  • Yang Yang
    • 2
  1. 1.Department of OrthopaedicsThe 82th Hospital of PLAHuaianChina
  2. 2.Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi’anChina
  3. 3.Department of Thoracic Surgery, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina
  4. 4.Department of Aerospace MedicineThe Fourth Military Medical UniversityXi’anChina
  5. 5.Department of NeurosurgeryGeneral Hospital of Shenyang Military Area CommandShenyangChina

Personalised recommendations