Advertisement

Apoptosis

, Volume 21, Issue 4, pp 404–420 | Cite as

Knockdown of α-synuclein in cerebral cortex improves neural behavior associated with apoptotic inhibition and neurotrophin expression in spinal cord transected rats

  • You-Cui Wang
  • Guo-Ying Feng
  • Qing-Jie Xia
  • Yue Hu
  • Yang Xu
  • Liu-lin Xiong
  • Zhi-wei Chen
  • Hang-Ping Wang
  • Ting-Hua WangEmail author
  • Xue ZhouEmail author
Article

Abstract

Spinal cord injury (SCI) often causes severe functional impairment with poor recovery. The treatment, however, is far from satisfaction, and the mechanisms remain unclear. By using proteomics and western blot, we found spinal cord transection (SCT) resulted in a significant down-regulation of α-synuclein (SNCA) in the motor cortex of SCT rats at 3 days post-operation. In order to detect the role of SNCA, we used SNCA-ORF/shRNA lentivirus to upregulate or knockdown SNCA expression. In vivo, SNCA-shRNA lentivirus injection into the cerebral cortex motor area not only inhibited SNCA expression, but also significantly enhanced neurons’ survival, and attenuated neuronal apoptosis, as well as promoted motor and sensory function recovery in hind limbs. While, overexpression SNCA exhibited the opposite effects. In vitro, cortical neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival and neurite outgrowth, while it was accompanied by reverse efficiency in SNCA-ORF group. In molecular level, SNCA silence induced the upregulation of Bcl-2 and the downregulation of Bax, and the expression of NGF, BDNF and NT3 was substantially upregulated in cortical neurons. Together, endogenous SNCA play a crucial role in motor and sensory function regulation, in which, the underlying mechanism may be linked to the regulation of apoptosis associated with apoptotic gene (Bax, Bcl2) and neurotrophic factors expression (NGF, BDNF and NT3). These finds provide novel insights to understand the role of SNCA in cerebral cortex after SCT, and it may be as a novel treatment target for SCI repair in future clinic trials.

Keywords

α-synuclein Spinal cord transection Cortical neuron Apoptosis Motor and sensory function 

Notes

Acknowledgments

We gratefully thank Jia Liu and Mei-rong Chen for assistance with the experiment and valuable discussion. This research was supported by a grant from National Natural Science Foundation of China (CN) (No. 81171176).

Compliance with ethical standards

Conflicts of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Munce SE, Perrier L, Tricco AC, Straus SE, Fehlings MG, Kastner M et al (2013) Impact of quality improvement strategies on the quality of life and well-being of individuals with spinal cord injury: a systematic review protocol. Syst Rev 2:14PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L, O’Connor KC et al (2015) Traumatic spinal cord injury in the United States, 1993-2012. JAMA 313(22):2236–2243CrossRefPubMedGoogle Scholar
  3. 3.
    David S, López-Vales R, Wee YV (2012) Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handb Clin Neurol 109:485–502CrossRefPubMedGoogle Scholar
  4. 4.
    Yang HJ, Yang XY (2009) Role of neurotrophin 3 in spinal neuroplasticity in rats subjected to cord transection. Growth Factors 27(4):237–246CrossRefPubMedGoogle Scholar
  5. 5.
    Li XL, Wei Z, Xue Z, Wang XY, Zhang HT, Qin DX et al (2007) Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats. Neuropeptides 41(3):135–143CrossRefPubMedGoogle Scholar
  6. 6.
    Ran L, Wei Z, Qi Z, Su-Juan L, Jia L, Mu H et al (2014) Endoplasmic reticulum protein 29 protects cortical neurons from apoptosis and promoting corticospinal tract regeneration to improve neural behavior via caspase and erk signal in rats with spinal cord transection. Mol Neurobiol 50(3):1035–1048CrossRefGoogle Scholar
  7. 7.
    Galpern WR, Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59(3):449–458CrossRefPubMedGoogle Scholar
  8. 8.
    Sanchez-Guajardo V, Barnum CJ, Tansey MG, Romero-Ramos M (2013) Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5(2):113–139CrossRefPubMedGoogle Scholar
  9. 9.
    Luk KC, Lee MY (2014) Modeling lewy pathology propagation in parkinson’s disease. Parkinsonism Relat Disord Suppl 1:S85–S87CrossRefGoogle Scholar
  10. 10.
    Jeon SM, Cheon SM, Bae HR, Kim JW, Su K (2010) Selective susceptibility of human dopaminergic neural stem cells to dopamine-induced apoptosis. Exp Neurobiol 19(3):155–164PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Seo JH, Rah JC, Choi SH, Shin JK, Min K, Park CH et al (2002) Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3 K/AKT kinase pathway. FASEB J 16(13):1826–1828PubMedGoogle Scholar
  12. 12.
    Clough RL, Stefanis L (2007) A novel pathway for transcriptional regulation of alpha-synuclein. FASEB J 21(2):596–607CrossRefPubMedGoogle Scholar
  13. 13.
    Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T et al (2005) Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol 109(2):141–150CrossRefPubMedGoogle Scholar
  14. 14.
    Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G et al (2010) Overexpression of alpha-synuclein down-regulates BDNF expression. Cell Mol Neurobiol 30(6):939–946CrossRefPubMedGoogle Scholar
  15. 15.
    Wei W, Fang W, Jia L, Wei Z, Qi Z, Mu H et al (2014) SNAP25 ameliorates sensory deficit in rats with spinal cord transection. Mol Neurobiol 50(2):290–304CrossRefGoogle Scholar
  16. 16.
    Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable motor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21CrossRefPubMedGoogle Scholar
  17. 17.
    Yang X, Liu J, Liu ZJ, Xia QJ, He M, Liu R (2014) Reversal of bone cancer pain by hsv-1-mediated silencing of CNTF in an afferent area of the spinal cord associated with AKT-ERk signal inhibition. Curr Gene Ther 14(5):377–388CrossRefPubMedGoogle Scholar
  18. 18.
    Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 10(11):1015–1025CrossRefPubMedGoogle Scholar
  19. 19.
    Lesuisse C, Martin LJ (2002) Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. J Neurobiol 51(1):9–23CrossRefPubMedGoogle Scholar
  20. 20.
    Chadchankar H, Yavich L (2011) Sub-regional differences and mechanisms of the short-term plasticity of dopamine overflow in striatum in mice lacking alpha-synuclein. Brain Res 1423:67–76CrossRefPubMedGoogle Scholar
  21. 21.
    Watson J, Hatami AH, Masliah E, Roberts K, Evans C, Levine M (2009) Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein. Neuroscience 159(2):501–513PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Wang L, Das U, Wang L, Das U, Scott DA, Tang Y, McLean PJ, Roy S (2014) α-synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr Biol 24(19):2319–2326PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Scott D, Roy S (2012) α-synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J Neurosci 32(30):10129–10135PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76(2):319–370PubMedGoogle Scholar
  25. 25.
    Rossignol S, Drew T, Brustein E, Jiang W (1999) Motor performance and adaptation after partial or complete spinal cord lesions in the cat. Prog Brain Res 123:349–365CrossRefPubMedGoogle Scholar
  26. 26.
    Wernig A, Müller S (1992) Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 30(4):229–238CrossRefPubMedGoogle Scholar
  27. 27.
    Dietz V, Wirz M, Curt A, Colombo G (1998) Motor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord 36(6):380–390CrossRefPubMedGoogle Scholar
  28. 28.
    Drouin-Ouellet J, St-Amour I, Saint-Pierre M, Lamontagne-Proulx J, Kriz J, Barker RA et al (2015) Toll-like receptor expression in the blood and brain of patients and a mouse model of Parkinson’s disease. Int J Neuropsychopharmacol 18(6). pii: pyu103. doi:  10.1093/ijnp/pyu103
  29. 29.
    Larson ME, Sherman MA, Greimel S, Kuskowski M, Schneider JA, Bennett DA et al (2012) Soluble alpha-synuclein is a novel modulator of alzheimer’s disease pathophysiology. J Neurosci 32(30):10253–10266PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Hirsch EC, Hunot S, Faucheux B, Agid Y, Mizuno Y, Mochizuki H et al (1999) Dopaminergic neurons degenerate by apoptosis in Parkinson’s disease. Mov Disord 14(2):383–385CrossRefPubMedGoogle Scholar
  31. 31.
    Harding AJ, Lakay B, Halliday GM (2002) Selective hippocampal neuron loss in dementia with Lewy bodies. Ann Neurol 51(1):125–128CrossRefPubMedGoogle Scholar
  32. 32.
    McKeith I, Mintzer J, Aarsland D, Burn D, Chiu H, Cohen-Mansfield J et al (2004) Dementia with Lewy bodies. Lancet Neurol 3(1):19–28CrossRefPubMedGoogle Scholar
  33. 33.
    Aldrin-Kirk P, Davidsson M, Holmqvist S, Li JY, Björklund T (2014) Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons. PLoS One 9(7):e100869. doi: 10.1371/journal.pone.0100869 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T et al (2014) The protective role of amp-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis 63:1–11CrossRefPubMedGoogle Scholar
  35. 35.
    Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, Kuum M et al (2011) Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem 286(12):10814–10824PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Winner B, Regensburger M, Schreglmann S, Boyer L, Prots I, Rockenstein E et al (2012) Role of α-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci 32(47):16906–16916CrossRefPubMedGoogle Scholar
  37. 37.
    Kramer ML, Schulz-Schaeffer WJ (2007) Presynaptic α-synuclein aggregates, not lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 27(6):1405–1410CrossRefPubMedGoogle Scholar
  38. 38.
    Ethell DW, Qingyan F (2008) Parkinson-linked genes and toxins that affect neuronal cell death through the bcl-2 family. Antioxid Redox Signal 11(3):529–540CrossRefGoogle Scholar
  39. 39.
    Hamill RW, Tompkins JD, Girard BM, Kershen RT, Parsons RL, Vizzard MA (2012) Autonomic dysfunction and plasticity in micturition reflexes in human α-synuclein mice. Dev Neurobiol 72(6):918–936PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Vairo F, Sperb-Ludwig F, Wilke M, Michellin-Tirelli K, Netto C, Neto EC et al (2014) Brain-derived neurotrophic factor expression increases after enzyme replacement therapy in gaucher disease. J Neuroimmunol 278:190–193CrossRefPubMedGoogle Scholar
  41. 41.
    Chinta SJ, Mallajosyula JK, Rane A, Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486(3):235–239PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2009) Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol 41(10):2015–2024CrossRefPubMedGoogle Scholar
  43. 43.
    Szegő ÉM, Outeiro TF, Kermer P, Schulz JB (2012) Impairment of the septal cholinergic neurons in MPTP-treated A30P α-synuclein mice. Neurobiol Aging 34(2):589–601CrossRefPubMedGoogle Scholar
  44. 44.
    Sathiya S, Ranju V, Kalaivani P, Priya RJ, Sumathy H, Sunil AG et al (2013) Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of α-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6 J mice. Neuropharmacology 73:98–110CrossRefPubMedGoogle Scholar
  45. 45.
    Clough RL, Dermentzaki G, Haritou M, Petsakou A, Stefanis L (2011) Regulation of α-synuclein expression in cultured cortical neurons. J Neurochemy 117(2):275–285CrossRefGoogle Scholar
  46. 46.
    Ghoroghi FM, Hejazian LB, Esmaielzade B, Dodel M, Roudbari M, Nobakht M (2013) Evaluation of the effect of NT-3 and biodegradable poly-L-lactic acid nanofiber scaffolds on differentiation of rat hair follicle stem cells into neural cells in vitro. J Mol Neurosci 51:318–327CrossRefGoogle Scholar
  47. 47.
    Yalvac ME, Arnold WD, Braganza C, Chen L, Mendell JR, Sahenk Z (2015) AAV1.NT-3 gene therapy attenuates spontaneous autoimmune peripheral polyneuropathy. Gene. doi: 10.1038/gt.2015.67 Google Scholar
  48. 48.
    Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL (2013) Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats. J Neurophysiol 110(8):1782–1792CrossRefPubMedGoogle Scholar
  49. 49.
    von Bohlen und Halbach O, Minichiello L, Unsicker K (2005) Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J 19(12):1740–1742PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • You-Cui Wang
    • 1
  • Guo-Ying Feng
    • 1
  • Qing-Jie Xia
    • 3
  • Yue Hu
    • 3
  • Yang Xu
    • 3
  • Liu-lin Xiong
    • 3
  • Zhi-wei Chen
    • 4
  • Hang-Ping Wang
    • 4
  • Ting-Hua Wang
    • 1
    • 2
    • 3
    Email author
  • Xue Zhou
    • 1
    Email author
  1. 1.Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of BiotherapySichuan UniversityChengduChina
  2. 2.Institute of NeuroscienceKunming Medical UniversityKunmingChina
  3. 3.Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
  4. 4.Institute of Physical EducationYunnan Normal UniversityKunmingChina

Personalised recommendations