Advertisement

Apoptosis

, Volume 20, Issue 4, pp 466–480 | Cite as

Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes

  • Muttiah Barathan
  • Kaliappan Gopal
  • Rosmawati Mohamed
  • Rada Ellegård
  • Alireza Saeidi
  • Jamuna Vadivelu
  • Abdul W. Ansari
  • Hussin A. Rothan
  • M. Ravishankar Ram
  • Keivan Zandi
  • Li Y. Chang
  • Ramachandran Vignesh
  • Karlhans F. Che
  • Adeeba Kamarulzaman
  • Vijayakumar Velu
  • Marie Larsson
  • Tunku Kamarul
  • Esaki M. Shankar
Original Paper

Abstract

Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex® 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.

Keywords

Apoptosis Caspase Hepatitis C Spontaneous immune exhaustion TRAIL 

Notes

Acknowledgments

We thank all the participants, clinical, paraclinical and laboratory staff of University of Malaya Medical Center for assistance with patient recruitment, specimen collection and cooperation. This work was financially supported by the High Impact Research (UM.C.625/1/HIR/139), University of Malaya to Esaki M. Shankar for a study titled ‘Mechanisms of T cell dysfunctions in hepatitis C infection’. Tunku Kamarul is supported by the HIRG-MOHE A000003-50001 Grant of University of Malaya. Marie Larsson is supported by Grant No. AI52731 from the Swedish Research Council, the Swedish Physicians against AIDS Research Foundation, the Swedish International Development Cooperation Agency; SIDA SARC, VINNMER for Vinnova, Linköping University Hospital Research Fund, CALF and the Swedish Society of Medicine. We also acknowledge financial support from the University of Malaya Research Grant (UMRG) RG448-12HTM of the Health and Translational Medicine Research Cluster, University of Malaya to Esaki M. Shankar.

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

References

  1. 1.
    Ly KN, Xing J, Klevens RM, Jiles RB, Ward JW, Holmberg SD (2012) The increasing burden of mortality from viral hepatitis in the United States between 1999 and 2007. Ann Intern Med 156(4):271–278CrossRefPubMedGoogle Scholar
  2. 2.
    Cai Z, Yi M, Zhang C, Luo G (2005) Mutagenesis analysis of the rGTP-specific binding site of hepatitis C virus RNA-dependent RNA polymerase. J Virol 79(18):11607–11617CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Polis CB, Shah SN, Johnson KE, Gupta A (2007) Impact of maternal HIV coinfection on the vertical transmission of hepatitis C virus: a meta-analysis. Clin Infect Dis 44(8):1123–1131CrossRefPubMedGoogle Scholar
  4. 4.
    Wantuck JM, Ahmed A, Nguyen MH (2013) The epidemiology and therapy of chronic hepatitis C genotypes 4, 5 and 6. Aliment Pharmacol Ther 39(2):137–147CrossRefPubMedGoogle Scholar
  5. 5.
    Kanda T, Imazeki F, Yokosuka O (2010) New antiviral therapies for chronic hepatitis C. Hepatol Int 4(3):548–561CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Sansonno D (2012) Immune-related disorders and extrahepatic diseases in chronic HCV infection. Clin Dev Immunol 2012:509309CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Neumann AU, Lam NP, Dahari H, Davidian M, Wiley TE, Mika BP et al (2000) Differences in viral dynamics between genotypes 1 and 2 of hepatitis C virus. J Infect Dis 182(1):28–35CrossRefPubMedGoogle Scholar
  8. 8.
    Xing Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4(6):1–15CrossRefGoogle Scholar
  9. 9.
    Di Somma MM, Somma F, Gilardini Montani MS, Mangiacasale R, Cundari E, Piccolella E (1999) TCR engagement regulates differential responsiveness of human memory T cells to Fas (CD95)-mediated apoptosis. J Immunol 162(7):3851–3858PubMedGoogle Scholar
  10. 10.
    Cavani A, Nasorri F, Ottaviani C, Sebastiani S, De Pità O, Girolomoni G (2003) Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J Immunol 171(11):5760–5768CrossRefPubMedGoogle Scholar
  11. 11.
    Calabrese F, Pontisso P, Pettenazzo E, Benvegnù L, Vario A, Chemello L et al (2000) Liver cell apoptosis in chronic hepatitis C correlates with histological but not biochemical activity or serum HCV-RNA levels. Hepatology 31(5):1153–1159CrossRefPubMedGoogle Scholar
  12. 12.
    Núñez M, Soriano V, López M, Ballesteros C, Cascajero A, González-Lahoz J et al (2006) Coinfection with hepatitis C virus increases lymphocyte apoptosis in HIV-infected patients. Clin Infect Dis 43(9):1209–1212CrossRefPubMedGoogle Scholar
  13. 13.
    Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L et al (2009) Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458(7235):206–210CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Feuth T, Arends JE, Fransen JH, Nanlohy NM, van Erpecum KJ, Siersema PD et al (2013) Complementary role of HCV and HIV in T-cell activation and exhaustion in HIV/HCV coinfection. PLoS One 8(3):e59302CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Nielsen SD, Afzelius P, Ersbøll AK, Nielsen JO, Hansen JE (1998) Expression of the activation antigen CD69 predicts functionality of in vitro expanded peripheral blood mononuclear cells (PBMC) from healthy donors and HIV-infected patients. Clin Exp Immunol 114(1):66–72CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hoffmann TK, Dworacki G, Tsukihiro T, Meidenbauer N, Gooding W, Johnson JT et al (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8(8):2553–2562PubMedGoogle Scholar
  18. 18.
    Vig M, Srivastava S, Kandpal U, Sade H, Lewis V, Sarin A et al (2004) Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J Clin Invest 113(12):1734–1742CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    McCloskey TW, Oyaizu N, Kaplan M, Pahwa S (1995) Expression of the Fas antigen in patients infected with human immunodeficiency virus. Cytometry 22(2):111–114CrossRefPubMedGoogle Scholar
  20. 20.
    Hashimoto F, Oyaizu N, Kalyanaraman VS, Pahwa S (1997) Modulation of Bcl-2 protein by CD4 cross-linking: a possible mechanism for lymphocyte apoptosis in human immunodeficiency virus infection and for rescue of apoptosis by interleukin-2. Blood 90(2):745–753PubMedGoogle Scholar
  21. 21.
    Cuconati A, White E (2002) Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 16(19):2465–2478CrossRefPubMedGoogle Scholar
  22. 22.
    Abbas W, Herbein G (2013) T-cell signaling in HIV-1 infection. Open Virol J 7:57–71CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Elbim C, Monceaux V, Mueller YM, Lewis MG, François S, Diop O et al (2008) Early divergence in neutrophil apoptosis between pathogenic and nonpathogenic simian immunodeficiency virus infections of nonhuman primates. J Immunol 181(12):8613–8623CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ (1995) Induction of apoptosis in mature T cells by tumor necrosis factor. Nature 377(6547):348–351CrossRefPubMedGoogle Scholar
  25. 25.
    Ding F, Shao ZW, Yang SH, Wu Q, Gao F, Xiong LM (2012) Role of mitochondrial pathway in compression-induced apoptosis of nucleus pulposus cells. Apoptosis 17(6):579–590CrossRefPubMedGoogle Scholar
  26. 26.
    Rukoyatkina N, Mindukshev I, Walter U, Gambaryan S (2013) Dual role of the p38 MAPK/cPLA2 pathway in the regulation of platelet apoptosis induced by ABT-737 and strong platelet agonists. Cell Death Dis 4:e931CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Brault C, Levy PL, Bartosch B (2013) Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 5(3):954–980CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Shankar EM, Che KF, Messmer D, Lifson JD, Larsson M (2011) Expression of a broad array of negative costimulatory molecules and Blimp-1 in T cells following priming by HIV-1 pulsed dendritic cells. Mol Med 17(3–4):229–240PubMedCentralPubMedGoogle Scholar
  29. 29.
    Barathan M, Mariappan V, Shankar EM, Abdullah BJ, Goh KL, Vadivelu J (2013) Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases. Cell Death Dis 4:e697CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Obojes K, Andres O, Kim KS, Däubener W, Schneider-Schaulies J (2005) Indoleamine 2, 3-dioxygenase mediates cell type-specific anti-measles virus activity of gamma interferon. J Virol 79(12):7768–7776CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Higashitani K, Kanto T, Kuroda S, Yoshio S, Matsubara T, Kakita N et al (2013) Association of enhanced activity of indoleamine 2,3-dioxygenase in dendritic cells with the induction of regulatory T cells in chronic hepatitis C infection. J Gastroenterol 48(5):660–670CrossRefPubMedGoogle Scholar
  32. 32.
    Larsson M, Shankar EM, Che KF, Saeidi A, Ellegård R, Barathan M et al (2013) Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 10:31CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Rue CA, Jarvis MA, Knoche AJ, Meyers HL, DeFilippis VR, Hansen SG et al (2004) A cyclooxygenase -2 homologue encoded by rhesus cytomegalovirus is a determinant for endothelial cell tropism. J Virol 78(22):12529–12536CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Abdalla SI, Sanderson IR, Fitzgerald RC (2005) Effect of inflammation on cyclooxygenase (COX)-2 expression in benign and malignant oesophageal cells. Carcinogenesis 26(9):1627–1633CrossRefPubMedGoogle Scholar
  35. 35.
    Wang W, Bergh A, Damber J (2005) Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer tumor neovascularization in human prostate cancer. Clin Cancer Res 11(9):3250–3256CrossRefPubMedGoogle Scholar
  36. 36.
    Garden GA, Budd SL, Tsai E, Hanson L, Kaul M, D’Emilia DM et al (2002) Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci 22(10):4015–4024PubMedGoogle Scholar
  37. 37.
    Lin TK, Cheng CH, Chen SD, Liou CW, Huang CR, Chuang YC (2012) Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci 13(7):8722–8839CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Núñez O, Fernández-Martínez A, Majano PL, Apolinario A, Gómez-Gonzalo M, Benedicto I et al (2004) Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut 53(11):1665–1672CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Khaitan A, Unutmaz D (2011) Revisiting immune exhaustion during HIV infection. Curr HIV/AIDS Rep 8(1):4–11CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Ou R, Zhang M, Huang L, Moskophidis D (2008) Control of virus-specific CD8+ T-cell exhaustion and immune-mediated pathology by E3 ubiquitin ligase Cbl-b during chronic viral infection. J Virol 82(7):3353–3368CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633CrossRefPubMedGoogle Scholar
  42. 42.
    Gasper-Smith N, Crossman DM, Whitesides JF, Mensali N, Ottinger JS, Plonk SG et al (2008) Induction of plasma (TRAIL), TNFR-2, Fas ligand, and plasma microparticles after human immunodeficiency virus type 1 (HIV-1) transmission: implications for HIV-1 vaccine design. J Virol 82(15):7700–7710CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM et al (2002) Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122(2):366–375CrossRefPubMedGoogle Scholar
  44. 44.
    Fink SL, Cookson BT (2005) Eukaryotic cells apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Kaminskyy V, Zhivotovsky B (2010) To kill or be killed: how viruses interact with the cell death machinery. J Intern Med 267(5):473–482CrossRefPubMedGoogle Scholar
  46. 46.
    O’Brien V (1998) Viruses and apoptosis. J Gen Virol 79(Pt 8):1833–1845PubMedGoogle Scholar
  47. 47.
    Vanlandschoot P, Leroux-Roels G (2003) Viral apoptotic mimicry: an immune evasion strategy developed by the hepatitis B virus? Trends Immunol 24(3):144–147CrossRefPubMedGoogle Scholar
  48. 48.
    Hou W, Liu KZ, Li MW, Wo JE (2005) Effect of IFNalpha-2a on Fas expression and apoptosis rate of peripheral blood cytotoxic T cells in patients with hepatitis B. Hepatobiliary Pancreat Dis Int 4(3):403–405PubMedGoogle Scholar
  49. 49.
    Gupta A, Nagilla P, Le HS, Bunney C, Zych C, Thalamuthu A et al (2011) Comparative expression profile of miRNA and mRNA in primary peripheral blood mononuclear cells infected with human immunodeficiency virus (HIV-1). PLoS One 6(7):e22730CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Yahya RS, Ghanem OH, Foyouh AA, Atwa M, Enany SA (2013) Role of interleukin-8 and oxidative stress in patients with hepatocellular carcinoma. Clin Lab 59(9–10):969–976PubMedGoogle Scholar
  51. 51.
    Muriel P (2009) Role of free radicals in liver diseases. Hepatol Int 3(4):526–536CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Tardif KD, Waris G, Siddiqui A (2005) Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol 13(4):159–163CrossRefPubMedGoogle Scholar
  53. 53.
    Arciello M, Gori M, Balsano C (2013) Mitochondrial dysfunctions and altered metals momeostasis: new weapons to counteract HCV-related oxidative stress. Oxid Med Cell Longev 2013:971024CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowich H et al (2002) Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 277(30):26912–26920CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang Z, Xu X, Lu J, Zhang S, Gu L, Fu J et al (2011) B and T lymphocyte attenuator down-regulation by HIV-1 depends on type I interferon and contributes to T-cell hyperactivation. J Infect Dis 203(11):1668–1678CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Xu XS, Zhang Z, Gu LL, Wang FS (2009) BTLA characterization and its association with disease progression in patients with chronic HIV-1 infection. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 25(12):1158–1160PubMedGoogle Scholar
  57. 57.
    Le Bouteiller P, Barakonyi A, Giustiniani J, Lenfant F, Marie-Cardine A, Aguerre-Girr M et al (2002) Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc Natl Acad Sci USA 99(26):16963–16968CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    del Rio ML, Lucas CL, Buhler L, Rayat G, Rodriguez-Barbosa JI (2010) HVEM/LIGHT/BTLA/CD160 cosignaling pathways as targets for immune regulation. J Leukoc Biol 87(2):223–235CrossRefPubMedGoogle Scholar
  59. 59.
    Volkmann X, Fischer U, Bahr MJ, Ott M, Lehner F, Macfarlane M et al (2007) Increased hepatotoxicity of tumor necrosis factor-related apoptosis-inducing ligand in diseased human liver. Hepatology 46(5):1498–1508CrossRefPubMedGoogle Scholar
  60. 60.
    Speletas M, Argentou N, Germanidis G, Vasiliadis T, Mantzoukis K, Patsiaoura K et al (2011) Foxp3 expression in liver correlates with the degree but not the cause of inflammation. Mediators Inflamm 2011:827565CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Vali B, Jones RB, Sakhdari A, Sheth PM, Clayton K, Yue FY et al (2010) HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression. Eur J Immunol 40(9):2493–2505CrossRefPubMedGoogle Scholar
  62. 62.
    Kroy DC, Ciuffreda D, Cooperrider JH, Tomlinson M, Hauck GD, Aneja J et al (2014) Liver environment and HCV replication affect human T-cell phenotype and expression of inhibitory receptors. Gastroenterology 146(2):550–561CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Aref S, Abdullah D, Fouda M, El Menshawy N, Azmy E, Bassam A et al (2011) Neutrophil apoptosis in neutropenic patients with hepatitis C infection: role of caspases 3, 10, and GM-CSF. Indian J Hematol Blood Transfus 27(2):81–87CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Simonin Y, Disson O, Lerat H, Antoine E, Binamé F, Rosenberg AR et al (2009) Calpain activation by hepatitis C virus proteins inhibits the extrinsic apoptotic signaling pathway. Hepatology 50(5):1370–1379CrossRefPubMedGoogle Scholar
  65. 65.
    Schleich K, Lavrik IN (2013) Systems biology of death receptor-induced apoptosis. In: Lavrik IN (ed) Systems biology of apoptosis. Springer, Science + Business Media, New York, pp 33–57Google Scholar
  66. 66.
    Wang W, Sun Q, Wu Z, Zhou D, Wei J, Xie H et al (2013) Mitochodrial dysfuntion-related genes in hepatocellular carcinoma. Front Biosci (Landmark Ed) 18:1141–1149CrossRefGoogle Scholar
  67. 67.
    Tischner D, Woess C, Ottina E, Villunger A (2010) Bcl-2-regulated cell death signalling in the prevention of autoimmunity. Cell Death Dis 21:e48CrossRefGoogle Scholar
  68. 68.
    Feuth T, Van Baarle D, Hoepelman AI, Van Erpecum KJ, Siersema PD, Arends JE (2014) Activation of extrinsic apoptosis pathway in HCV monoinfected and HIV-HCV coinfected patients, irrespective of liver disease severity. Apoptosis 19(7):1128–1135CrossRefPubMedGoogle Scholar
  69. 69.
    Arends JE, Hoepelman AI, Nanlohy NM, Höppener FJ, Hirsch KR, Park JG et al (2011) Low doses of the novel caspase-inhibitor GS-9450 leads to lower caspase-3 and -8 expression on peripheral CD4+ and CD8+ T-cells. Apoptosis 16(9):959–966CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Muttiah Barathan
    • 1
  • Kaliappan Gopal
    • 2
  • Rosmawati Mohamed
    • 3
  • Rada Ellegård
    • 4
  • Alireza Saeidi
    • 1
  • Jamuna Vadivelu
    • 1
  • Abdul W. Ansari
    • 5
  • Hussin A. Rothan
    • 6
  • M. Ravishankar Ram
    • 1
  • Keivan Zandi
    • 1
  • Li Y. Chang
    • 1
  • Ramachandran Vignesh
    • 7
  • Karlhans F. Che
    • 8
  • Adeeba Kamarulzaman
    • 3
    • 5
  • Vijayakumar Velu
    • 9
  • Marie Larsson
    • 4
  • Tunku Kamarul
    • 2
  • Esaki M. Shankar
    • 1
    • 5
  1. 1.Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.National Orthopedics Center for Excellence in Research and Learning (NOCERAL), Department of Orthopedics surgery, Tissue engineering group (TEG), Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of MedicineUniversity of MalayaKuala LumpurMalaysia
  4. 4.Division of Molecular Virology, Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
  5. 5.Center for of Excellence for Research in AIDS (CERiA)University of MalayaKuala LumpurMalaysia
  6. 6.Department of Molecular MedicineUniversity of MalayaKuala LumpurMalaysia
  7. 7.YRG Center for AIDS Research and EducationVoluntary Health Services Hospital CampusChennaiIndia
  8. 8.Unit for Lung and Airway Research, Division of Physiology, Institute for Environmental MedicineKarolinska InstituteStockholmSweden
  9. 9.Department of Microbiology and ImmunologyEmory Vaccine CenterAtlantaUSA

Personalised recommendations