, Volume 20, Issue 2, pp 210–215 | Cite as

Structural basis of cell apoptosis and necrosis in TNFR signaling

  • Jing Huang
  • Shaoning Yu
  • Chaoneng Ji
  • Jixi Li
The Domains of Apoptosis and Inflammation


The tumor necrosis factor receptors (TNFRs) play essential roles in innate and adaptive immunity. Depending on conditions, TNFR induces multiple cell fates including cell survival, cell apoptosis, and cell programmed necrosis. Here, we review recent progress in structural studies of the TNFR signaling pathway. The structural basis for the high order signal complexes, including the DISC, ripoptosome, necrosome, and RIP3/MLKL complex, may provide novel insights for understanding the biophysical principles of cell signaling cascades.


TNFR Apoptosis Necrosis RIP1 RIP3 MLKL 



We apologize for incomplete citations due to space limitations. The work was supported by the National Natural Science Foundation of China (31470724 to J.L.) and the National Basic Research Program of China (2015CB943300 to J.L.).


  1. 1.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756PubMedCrossRefGoogle Scholar
  3. 3.
    Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27(1):19–26PubMedCrossRefGoogle Scholar
  4. 4.
    Haas TL et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36(5):831–844PubMedCrossRefGoogle Scholar
  5. 5.
    Walczak H (2011) TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev 244(1):9–28PubMedCrossRefGoogle Scholar
  6. 6.
    Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14(11):727–736PubMedCrossRefGoogle Scholar
  7. 7.
    Deng L et al (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2):351–361PubMedCrossRefGoogle Scholar
  8. 8.
    Hayden MS, Ghosh S (2014) Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26(3):253–266PubMedCrossRefGoogle Scholar
  9. 9.
    Moquin D, Chan FK (2010) The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 35(8):434–441PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bertrand MJ et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30(6):689–700PubMedCrossRefGoogle Scholar
  11. 11.
    Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133(4):693–703PubMedCrossRefGoogle Scholar
  12. 12.
    Tenev T et al (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43(3):432–448PubMedCrossRefGoogle Scholar
  13. 13.
    Ferrao R et al (2012) Structural insights into the assembly of large oligomeric signalosomes in the toll-like receptor-interleukin-1 receptor superfamily. Sci Signal 5(226):re3PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ferrao R, Wu H (2012) Helical assembly in the death domain (DD) superfamily. Curr Opin Struct Biol 22(2):241–247PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lu A et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206PubMedCrossRefGoogle Scholar
  16. 16.
    Carrington PE et al (2006) The structure of FADD and its mode of interaction with procaspase-8. Mol Cell 22(5):599–610PubMedCrossRefGoogle Scholar
  17. 17.
    Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30(2):180–192PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Park HH et al (2007) Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128(3):533–546PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Eberstadt M et al (1998) NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392(6679):941–945PubMedCrossRefGoogle Scholar
  20. 20.
    Jeong EJ et al (1999) The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD. J Biol Chem 274(23):16337–16342PubMedCrossRefGoogle Scholar
  21. 21.
    Wang L et al (2010) The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 17(11):1324–1329PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Jang TH et al (2014) Structural Study of the RIPoptosome core reveals a helical assembly for kinase recruitment. Biochemistry 53(33):5424–5431PubMedCrossRefGoogle Scholar
  23. 23.
    Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Blanchard H et al (1999) The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure 7(9):1125–1133PubMedCrossRefGoogle Scholar
  25. 25.
    Watt W et al (1999) The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure 7(9):1135–1143PubMedCrossRefGoogle Scholar
  26. 26.
    Siegel RM et al (1998) Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis. J Cell Biol 141(5):1243–1253PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Li FY et al (2006) Crystal structure of a viral FLIP: insights into FLIP-mediated inhibition of death receptor signaling. J Biol Chem 281(5):2960–2968PubMedCrossRefGoogle Scholar
  28. 28.
    Yang JK et al (2005) Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 20(6):939–949PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Dickens LS et al (2012) A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 47(2):291–305PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Schleich K et al (2012) Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol Cell 47(2):306–319PubMedCrossRefGoogle Scholar
  31. 31.
    Wu H (2013) Higher-order assemblies in a new paradigm of signal transduction. Cell 153(2):287–292PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Qiao Q et al (2013) Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol Cell 51(6):766–779PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kischkel FC et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14(22):5579–5588PubMedCentralPubMedGoogle Scholar
  34. 34.
    Li J, Yin Q, Wu H (2013) Structural basis of signal transduction in the TNF receptor superfamily. Adv Immunol 119:135–153PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Cho YS et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    He S et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang DW et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336PubMedCrossRefGoogle Scholar
  38. 38.
    Robinson N et al (2012) Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 13(10):954–962PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7(4):302–313PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11(3):290–297PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Sun L et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao J et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109(14):5322–5327PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Cai Z et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65PubMedCrossRefGoogle Scholar
  44. 44.
    Wang H et al (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146PubMedCrossRefGoogle Scholar
  45. 45.
    Chen X et al (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Blander JM (2014) A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 14(9):601–618PubMedCrossRefGoogle Scholar
  47. 47.
    Sun X et al (1999) RIP3, a novel apoptosis-inducing kinase. J Biol Chem 274(24):16871–16875PubMedCrossRefGoogle Scholar
  48. 48.
    Sun X et al (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277(11):9505–9511PubMedCrossRefGoogle Scholar
  49. 49.
    Li J et al (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2):339–350PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Murphy JM et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453PubMedCrossRefGoogle Scholar
  51. 51.
    Xie T et al (2013) Structural insights into RIP3-mediated necroptotic signaling. Cell Rep 5(1):70–78PubMedCrossRefGoogle Scholar
  52. 52.
    Xie T et al (2013) Structural basis of RIP1 inhibition by necrostatins. Structure 21(3):493–499PubMedCrossRefGoogle Scholar
  53. 53.
    Harris PA et al (2013) Discovery of small molecule RIP1 kinase inhibitors for the treatment of pathologies associated with necroptosis. ACS Med Chem Lett 4(12):1238–1243PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Kufareva I, Abagyan R (2008) Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J Med Chem 51(24):7921–7932PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Wu B et al (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152(1–2):276–289PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jing Huang
    • 1
    • 2
  • Shaoning Yu
    • 2
  • Chaoneng Ji
    • 1
  • Jixi Li
    • 1
  1. 1.State Key Laboratory of Genetic Engineering and School of Life SciencesFudan UniversityShanghaiChina
  2. 2.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations