Advertisement

Apoptosis

, Volume 19, Issue 5, pp 759–775 | Cite as

From the nucleus to the plasma membrane: translocation of the nuclear proteins histone H3 and lamin B1 in apoptotic microglia

  • Barbara Klein
  • Ursula Lütz-Meindl
  • Hubert H. Kerschbaum
Original Paper

Abstract

Nuclear autoantibodies have been found in patients with autoimmune diseases. One possible source for nuclear antigens are apoptotic cells. However, the mechanism of how apoptotic cells make nuclear factors accessible to the immune system is still elusive. In the present study, we investigated the redistribution of nuclear components after UV irradiation in the microglial cell line BV-2 and in primary mouse microglia at the ultrastructural level. We used transmission electron microscopy-coupled electron energy loss spectroscopy (EELS) to measure phosphorus as an indicator for nucleic acids and immunogold labeling to detect histone H3 and lamin B1 in apoptotic cells. EELS revealed elevated concentrations of phosphorus in nuclear and cytoplasmic condensed chromatin compared to the remaining cytoplasm. Furthermore, immunolabeling of lamin B1 and histone H3 was detected in apoptotic microglia not only in the nucleus, but also in the cytoplasm, and even at the plasma membrane. Confocal images of apoptotic microglia, which were not previously permeabilized, showed patches of histone H3 and lamin B1 labeling at the cell surface. The pan-caspase inhibitor Z-VAD-FMK (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone) prevented the occurrence of cytoplasmic condensed chromatin in apoptotic microglia. Our findings indicate that nuclear components leak from the nucleus into the cytoplasm in apoptotic microglia. At least histone H3 and lamin B1 reach the cell surface, this may promote autoreactive processes.

Keywords

Apoptosis Microglia Histone Lamin Ultrastructure 

Notes

Acknowledgments

B.K. was funded in part by the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement no HEALTH-F2-2011-278850 (INMiND).

Supplementary material

10495_2014_970_MOESM1_ESM.tif (283 kb)
Supplementary material 1 (TIFF 283 kb) Time course of DNA laddering in BV-2 microglia after UV irradiation. Lane 1 marker (M), Lane 2 control (C); Lane 3–5 DNA of BV-2 cells 1, 3, or 5 h after UV irradiation

References

  1. 1.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Rao L, Perez D, White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135(6 Pt 1):1441–1455PubMedCrossRefGoogle Scholar
  3. 3.
    Croft DR, Coleman ML, Li S, Robertson D, Sullivan T, Stewart CL, Olson MF (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168(2):245–255. doi: 10.1083/jcb.200409049 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 92(20):9042–9046PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276(10):7320–7326. doi: 10.1074/jbc.M008363200M008363200 PubMedCrossRefGoogle Scholar
  6. 6.
    Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179(4):1317–1330PubMedCrossRefGoogle Scholar
  7. 7.
    Radic M, Marion T, Monestier M (2004) Nucleosomes are exposed at the cell surface in apoptosis. J Immunol 172(11):6692–6700PubMedCrossRefGoogle Scholar
  8. 8.
    Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35(4):445–455. doi: 10.1016/j.immuni.2011.09.004 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S, Sarter K, Voll RE, Winkler T, Kuhn A, Kalden J, Kern P, Herrmann M (2007) Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 28(2–3):114–121. doi: 10.1016/j.jaut.2007.02.005 PubMedCrossRefGoogle Scholar
  10. 10.
    Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2(12):965–975. doi: 10.1038/nri957nri957 PubMedCrossRefGoogle Scholar
  11. 11.
    Elliott MR, Ravichandran KS (2010) Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189(7):1059–1070. doi: 10.1083/jcb.201004096 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Erwig LP, Henson PM (2007) Immunological consequences of apoptotic cell phagocytosis. Am J Pathol 171(1):2–8. doi: 10.2353/ajpath.2007.070135 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the clearance of dead cells. Cell 140(5):619–630. doi: 10.1016/j.cell.2010.02.014 PubMedCrossRefGoogle Scholar
  14. 14.
    Shao WH, Cohen PL (2011) Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis research & therapy 13(1):202. doi: 10.1186/ar3206 CrossRefGoogle Scholar
  15. 15.
    Decker P (2006) Nucleosome autoantibodies. Clin Chim Acta 366(1–2):48–60. doi: 10.1016/j.cca.2005.11.009 PubMedCrossRefGoogle Scholar
  16. 16.
    Gomez-Puerta JA, Burlingame RW, Cervera R (2008) Anti-chromatin (anti-nucleosome) antibodies: diagnostic and clinical value. Autoimmun Rev 7(8):606–611. doi: 10.1016/j.autrev.2008.06.005 PubMedCrossRefGoogle Scholar
  17. 17.
    Rumore PM, Steinman CR (1990) Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J Clin Invest 86(1):69–74. doi: 10.1172/JCI114716 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ramage AE, Fox PT, Brey RL, Narayana S, Cykowski MD, Naqibuddin M, Sampedro M, Holliday SL, Franklin C, Wallace DJ, Weisman MH, Petri M (2011) Neuroimaging evidence of white matter inflammation in newly diagnosed systemic lupus erythematosus. Arthritis Rheum 63(10):3048–3057. doi: 10.1002/art.30458 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Sciascia S, Bertolaccini ML, Baldovino S, Roccatello D, Khamashta MA, Sanna G (2013) Central nervous system involvement in systemic lupus erythematosus: overview on classification criteria. Autoimmun Rev 12(3):426–429. doi: 10.1016/j.autrev.2012.08.014 PubMedCrossRefGoogle Scholar
  20. 20.
    Barned S, Goodman AD, Mattson DH (1995) Frequency of anti-nuclear antibodies in multiple sclerosis. Neurology 45(2):384–385PubMedCrossRefGoogle Scholar
  21. 21.
    Collard RC, Koehler RP, Mattson DH (1997) Frequency and significance of antinuclear antibodies in multiple sclerosis. Neurology 49(3):857–861PubMedCrossRefGoogle Scholar
  22. 22.
    Dore-Duffy P, Donaldson JO, Rothman BL, Zurier RB (1982) Antinuclear antibodies in multiple sclerosis. Arch Neurol 39(8):504–506PubMedCrossRefGoogle Scholar
  23. 23.
    Yukitake M, Sueoka E, Sueoka-Aragane N, Sato A, Ohashi H, Yakushiji Y, Saito M, Osame M, Izumo S, Kuroda Y (2008) Significantly increased antibody response to heterogeneous nuclear ribonucleoproteins in cerebrospinal fluid of multiple sclerosis patients but not in patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J Neurovirol 14(2):130–135. doi: 10.1080/13550280701883840 PubMedCrossRefGoogle Scholar
  24. 24.
    Comabella M, Rentzsch K, Rio J, Bustamante MF, Borowski K, Stoecker W, Montalban X (2013) Treatment with interferon-beta does not induce anti-nuclear and anti-neuronal serum autoantibodies in multiple sclerosis patients. J Neuroimmunol 255(1–2):102–104. doi: 10.1016/j.jneuroim.2012.10.016 PubMedCrossRefGoogle Scholar
  25. 25.
    Fukazawa T, Kikuchi S, Sasaki H, Hamada K, Hamada T, Miyasaka K, Tashiro K (1997) Anti-nuclear antibodies and the optic-spinal form of multiple sclerosis. J Neurol 244(8):483–488PubMedCrossRefGoogle Scholar
  26. 26.
    Szmyrka-Kaczmarek M, Pokryszko-Dragan A, Pawlik B, Gruszka E, Korman L, Podemski R, Wiland P, Szechinski J (2012) Antinuclear and antiphospholipid antibodies in patients with multiple sclerosis. Lupus 21(4):412–420. doi: 10.1177/0961203311427550 PubMedCrossRefGoogle Scholar
  27. 27.
    Solomon AJ, Hills W, Chen Z, Rosenbaum J, Bourdette D, Whitham R (2013) Autoantibodies and Sjogren’s syndrome in multiple sclerosis, a reappraisal. PLoS ONE 8(6):e65385. doi: 10.1371/journal.pone.0065385 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Mecocci P, Ekman R, Parnetti L, Senin U (1993) Antihistone and anti-dsDNA autoantibodies in Alzheimer’s disease and vascular dementia. Biol Psychiatry 34(6):380–385PubMedCrossRefGoogle Scholar
  29. 29.
    Lopez OL, Rabin BS, Huff FJ, Rezek D, Reinmuth OM (1992) Serum autoantibodies in patients with Alzheimer’s disease and vascular dementia and in nondemented control subjects. Stroke 23(8):1078–1083PubMedCrossRefGoogle Scholar
  30. 30.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi: 10.1126/science.1194637 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Greter M, Merad M (2013) Regulation of microglia development and homeostasis. Glia 61(1):121–127. doi: 10.1002/glia.22408 PubMedCrossRefGoogle Scholar
  32. 32.
    Jung S, Schwartz M (2012) Non-identical twins—microglia and monocyte-derived macrophages in acute injury and autoimmune inflammation. Front Immunol 3:89. doi: 10.3389/fimmu.2012.00089 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi: 10.1152/physrev.00011.2010 PubMedCrossRefGoogle Scholar
  34. 34.
    Parkhurst CN, Gan WB (2010) Microglia dynamics and function in the CNS. Curr Opin Neurobiol 20(5):595–600. doi: 10.1016/j.conb.2010.07.002 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Graeber MB (2010) Changing face of microglia. Science 330(6005):783–788. doi: 10.1126/science.1190929 PubMedCrossRefGoogle Scholar
  36. 36.
    Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92(3):293–315. doi: 10.1016/j.pneurobio.2010.06.009 PubMedCrossRefGoogle Scholar
  37. 37.
    Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6. doi: 10.3389/fncel.2013.00006 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339(6116):156–161. doi: 10.1126/science.1227901 PubMedCrossRefGoogle Scholar
  39. 39.
    Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clinical Dev Immunol 2013:948976. doi: 10.1155/2013/948976 CrossRefGoogle Scholar
  40. 40.
    Lee P, Lee J, Kim S, Lee MS, Yagita H, Kim SY, Kim H, Suk K (2001) NO as an autocrine mediator in the apoptosis of activated microglial cells: correlation between activation and apoptosis of microglial cells. Brain Res 892(2):380–385 PubMedCrossRefGoogle Scholar
  41. 41.
    Ladeby R, Wirenfeldt M, Garcia-Ovejero D, Fenger C, Dissing-Olesen L, Dalmau I, Finsen B (2005) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 48(2):196–206. doi: 10.1016/j.brainresrev.2004.12.009 PubMedCrossRefGoogle Scholar
  42. 42.
    Lee J, Hur J, Lee P, Kim JY, Cho N, Kim SY, Kim H, Lee MS, Suk K (2001) Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. Initiation of two separate apoptotic pathways via induction of interferon regulatory factor-1 and caspase-11. J Biol Chem 276(35):32956–32965. doi: 10.1074/jbc.M104700200-M104700200 PubMedCrossRefGoogle Scholar
  43. 43.
    Liu B, Wang K, Gao HM, Mandavilli B, Wang JY, Hong JS (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 77(1):182–189PubMedCrossRefGoogle Scholar
  44. 44.
    Mayo L, Jacob-Hirsch J, Amariglio N, Rechavi G, Moutin MJ, Lund FE, Stein R (2008) Dual role of CD38 in microglial activation and activation-induced cell death. J Immunol 181(1):92–103PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Bonetti B, Pohl J, Gao YL, Raine CS (1997) Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis. J Immunol 159(11):5733–5741PubMedGoogle Scholar
  46. 46.
    Kohji T, Matsumoto Y (2000) Coexpression of Fas/FasL and Bax on brain and infiltrating T cells in the central nervous system is closely associated with apoptotic cell death during autoimmune encephalomyelitis. J Neuroimmunol 106(1–2):165–171PubMedCrossRefGoogle Scholar
  47. 47.
    White CA, McCombe PA, Pender MP (1998) Microglia are more susceptible than macrophages to apoptosis in the central nervous system in experimental autoimmune encephalomyelitis through a mechanism not involving Fas (CD95). Int Immunol 10(7):935–941PubMedCrossRefGoogle Scholar
  48. 48.
    Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635. doi: 10.1038/nri3265 PubMedCrossRefGoogle Scholar
  49. 49.
    Chastain EM, Duncan DS, Rodgers JM, Miller SD (2011) The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta 1812(2):265–274. doi: 10.1016/j.bbadis.2010.07.008 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Goverman JM (2011) Immune tolerance in multiple sclerosis. Immunol Rev 241(1):228–240. doi: 10.1111/j.1600-065X.2011.01016.x PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Frisoni L, McPhie L, Colonna L, Sriram U, Monestier M, Gallucci S, Caricchio R (2005) Nuclear autoantigen translocation and autoantibody opsonization lead to increased dendritic cell phagocytosis and presentation of nuclear antigens: a novel pathogenic pathway for autoimmunity? J Immunol 175(4):2692–2701PubMedCrossRefGoogle Scholar
  52. 52.
    Frisoni L, McPhie L, Kang SA, Monestier M, Madaio M, Satoh M, Caricchio R (2007) Lack of chromatin and nuclear fragmentation in vivo impairs the production of lupus anti-nuclear antibodies. J Immunol 179(11):7959–7966PubMedCrossRefGoogle Scholar
  53. 53.
    Gabler C, Blank N, Hieronymus T, Schiller M, Berden JH, Kalden JR, Lorenz HM (2004) Extranuclear detection of histones and nucleosomes in activated human lymphoblasts as an early event in apoptosis. Ann Rheum Dis 63(9):1135–1144. doi: 10.1136/ard.2003-011452-63/9/1135 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y, Zhang L, Yoneda Y, Fujii Y, Skoultchi AI, Tsujimoto Y (2003) Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114(6):673–688PubMedCrossRefGoogle Scholar
  55. 55.
    Okamura H, Yoshida K, Amorim BR, Haneji T (2008) Histone H1.2 is translocated to mitochondria and associates with Bak in bleomycin-induced apoptotic cells. J Cell Biochem 103(5):1488–1496. doi: 10.1002/jcb.21537 PubMedCrossRefGoogle Scholar
  56. 56.
    Schiller M, Bekeredjian-Ding I, Heyder P, Blank N, Ho AD, Lorenz HM (2008) Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death Differ 15(1):183–191. doi: 10.1038/sj.cdd.4402239 PubMedCrossRefGoogle Scholar
  57. 57.
    Zierler S, Klein B, Furtner T, Bresgen N, Lütz-Meindl U, Kerschbaum HH (2006) Ultraviolet irradiation-induced apoptosis does not trigger nuclear fragmentation but translocation of chromatin from nucleus into cytoplasm in the microglial cell-line, BV-2. Brain Res 1121(1):12–21. doi: 10.1016/j.brainres.2006.08.122 PubMedCrossRefGoogle Scholar
  58. 58.
    Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27(2–3):229–237PubMedCrossRefGoogle Scholar
  59. 59.
    Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178PubMedGoogle Scholar
  60. 60.
    Frei K, Bodmer S, Schwerdel C, Fontana A (1986) Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J Immunol 137(11):3521–3527PubMedGoogle Scholar
  61. 61.
    Lütz-Meindl U, Aichinger N (2004) Use of energy-filtering transmission electron microscopy for routine ultrastructural analysis of high-pressure-frozen or chemically fixed plant cells. Protoplasma 223:155–162. doi: 10.1007/s00709-003-0033-3 PubMedCrossRefGoogle Scholar
  62. 62.
    Brack K, Frings W, Dotzauer A, Vallbracht A (1998) A cytopathogenic, apoptosis-inducing variant of hepatitis A virus. J Virol 72(4):3370–3376PubMedCentralPubMedGoogle Scholar
  63. 63.
    Batista LF, Kaina B, Meneghini R, Menck CF (2009) How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 681(2–3):197–208. doi: 10.1016/j.mrrev.2008.09.001 PubMedCrossRefGoogle Scholar
  64. 64.
    Ferrando-May E, Cordes V, Biller-Ckovric I, Mirkovic J, Gorlich D, Nicotera P (2001) Caspases mediate nucleoporin cleavage, but not early redistribution of nuclear transport factors and modulation of nuclear permeability in apoptosis. Cell Death Differ 8(5):495–505. doi: 10.1038/sj.cdd.4400837 PubMedCrossRefGoogle Scholar
  65. 65.
    Faleiro L, Lazebnik Y (2000) Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 151(5):951–959PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Bano D, Dinsdale D, Cabrera-Socorro A, Maida S, Lambacher N, McColl B, Ferrando-May E, Hengartner MO, Nicotera P (2010) Alteration of the nuclear pore complex in Ca(2+)-mediated cell death. Cell Death Differ 17(1):119–133. doi: 10.1038/cdd.2009.112 PubMedCrossRefGoogle Scholar
  67. 67.
    Patre M, Tabbert A, Hermann D, Walczak H, Rackwitz HR, Cordes VC, Ferrando-May E (2006) Caspases target only two architectural components within the core structure of the nuclear pore complex. J Biol Chem 281(2):1296–1304. doi: 10.1074/jbc.M511717200 PubMedCrossRefGoogle Scholar
  68. 68.
    Gilthorpe JD, Oozeer F, Nash J, Calvo M, Bennett DL, Lumsden A, Pini A (2013) Extracellular histone H1 is neurotoxic and drives a pro-inflammatory response in microglia. F1000Research 2. doi: 10.12688/f1000research.2-148.v1
  69. 69.
    Knight JS, Carmona-Rivera C, Kaplan MJ (2012) Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol 3:380. doi: 10.3389/fimmu.2012.00380 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Kaplan MJ, Radic M (2012) Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 189(6):2689–2695. doi: 10.4049/jimmunol.1201719 PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Darrah E, Andrade F (2012) NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 3:428. doi: 10.3389/fimmu.2012.00428 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531. doi: 10.1038/nri3024 PubMedCrossRefGoogle Scholar
  73. 73.
    Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198(5):773–783. doi: 10.1083/jcb.201203170 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Goldmann O, Medina E (2012) The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol 3:420. doi: 10.3389/fimmu.2012.00420 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Amulic B, Hayes G (2011) Neutrophil extracellular traps. Curr Biol 21(9):R297–298. doi: 10.1016/j.cub.2011.03.021 PubMedCrossRefGoogle Scholar
  76. 76.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. doi: 10.1126/science.1092385 PubMedCrossRefGoogle Scholar
  77. 77.
    Yousefi S, Simon D, Simon HU (2012) Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Curr Opin Immunol 24(6):736–739. doi: 10.1016/j.coi.2012.08.010 PubMedCrossRefGoogle Scholar
  78. 78.
    von Kockritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, Medina E (2008) Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111(6):3070–3080. doi: 10.1182/blood-2007-07-104018 CrossRefGoogle Scholar
  79. 79.
    Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, Nizet V (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8(5):445–454. doi: 10.1016/j.chom.2010.10.005 PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Aulik NA, Hellenbrand KM, Czuprynski CJ (2012) Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect Immun 80(5):1923–1933. doi: 10.1128/IAI.06120-11 PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Hellenbrand KM, Forsythe KM, Rivera-Rivas JJ, Czuprynski CJ, Aulik NA (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microb Pathog 54:67–75. doi: 10.1016/j.micpath.2012.09.007 PubMedCrossRefGoogle Scholar
  82. 82.
    Mohanan S, Horibata S, McElwee JL, Dannenberg AJ, Coonrod SA (2013) Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Front Immunol 4:67. doi: 10.3389/fimmu.2013.00067 PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Wong KW, Jacobs WR Jr (2013) Mycobacterium tuberculosis exploits human interferon gamma to stimulate macrophage extracellular trap formation and necrosis. J Infect Dis 208(1):109–119. doi: 10.1093/infdis/jit097 PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Hirsch JG (1958) Bactericidal action of histone. J Exp Med 108(6):925–944PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Parseghian MH, Luhrs KA (2006) Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem Cell Biol 84(4):589–604. doi: 10.1139/o06-082 PubMedCrossRefGoogle Scholar
  86. 86.
    Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, Malawista SE, de Boisfleury Chevance A, Zhang K, Conly J, Kubes P (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18(9):1386–1393. doi: 10.1038/nm.2847 PubMedCrossRefGoogle Scholar
  87. 87.
    Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. doi: 10.1083/jcb.200606027 PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953. doi: 10.1038/nm.1855 PubMedCrossRefGoogle Scholar
  89. 89.
    Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16(11):1438–1444. doi: 10.1038/cdd.2009.96 PubMedCrossRefGoogle Scholar
  90. 90.
    Senecal JL, Rauch J, Grodzicky T, Raynauld JP, Uthman I, Nava A, Guimond M, Raymond Y (1999) Strong association of autoantibodies to human nuclear lamin B1 with lupus anticoagulant antibodies in systemic lupus erythematosus. Arthritis Rheum 42(7):1347–1353. doi: 10.1002/1529-0131(199907)42:7<1347::AID-ANR7>3.0.CO;2-# PubMedCrossRefGoogle Scholar
  91. 91.
    Dieude M, Senecal JL, Rauch J, Hanly JG, Fortin P, Brassard N, Raymond Y (2002) Association of autoantibodies to nuclear lamin B1 with thromboprotection in systemic lupus erythematosus: lack of evidence for a direct role of lamin B1 in apoptotic blebs. Arthritis Rheum 46(10):2695–2707. doi: 10.1002/art.10552 PubMedCrossRefGoogle Scholar
  92. 92.
    Moisan E, Girard D (2006) Cell surface expression of intermediate filament proteins vimentin and lamin B1 in human neutrophil spontaneous apoptosis. J Leukoc Biol 79(3):489–498. doi: 10.1189/jlb.0405190 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Cell BiologyUniversity of SalzburgSalzburgAustria
  2. 2.Institute of Molecular Regenerative MedicineParacelsus Medical UniversitySalzburgAustria
  3. 3.Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS)Paracelsus Medical UniversitySalzburgAustria

Personalised recommendations