Advertisement

Apoptosis

, Volume 19, Issue 4, pp 555–566 | Cite as

Autophagy and apoptosis: where do they meet?

  • Subhadip Mukhopadhyay
  • Prashanta Kumar Panda
  • Niharika Sinha
  • Durgesh Nandini Das
  • Sujit Kumar BhutiaEmail author
Original Paper

Abstract

Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1’s interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.

Keywords

Autophagy Apoptosis Crosstalk Bcl-2 Beclin-1 BH3-only proteins 

Notes

Acknowledgments

We thank National Institute of Technology, Rourkela for providing facility for this research work. Research support was provided to SKB in part by Rapid Grant for Young Investigator (RGYI) award, Department of Biotechnology, Government of India and Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752PubMedCrossRefGoogle Scholar
  2. 2.
    Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975PubMedCrossRefGoogle Scholar
  3. 3.
    Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419PubMedCrossRefGoogle Scholar
  4. 4.
    Young MM, Kester M, Wang HG (2013) Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54:5–19PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498PubMedCrossRefGoogle Scholar
  6. 6.
    Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK et al (2013) Autophagy: cancer’s friend or foe? Adv Cancer Res 118:61–95PubMedCrossRefGoogle Scholar
  7. 7.
    Bhutia SK, Kegelman TP, Das SK, Azab B, Su ZZ, Lee SG et al (2010) Astrocyte elevated gene-1 induces protective autophagy. Proc Natl Acad Sci USA 107:22243–22248PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725PubMedCrossRefGoogle Scholar
  9. 9.
    Mathew SJ, Haubert D, Krönke M, Leptin M (2009) Looking beyond death: a morphogenetic role for the TNF signalling pathway. J Cell Sci 122:1939–1946PubMedCrossRefGoogle Scholar
  10. 10.
    Lee EW, Seo J, Jeong M, Lee S, Song J (2012) The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 45:496–508PubMedCrossRefGoogle Scholar
  11. 11.
    Pobezinskaya YL, Liu Z (2012) The role of TRADD in death receptor signaling. Cell Cycle 11:871–886PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, deJong S (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 1805:123–140PubMedGoogle Scholar
  13. 13.
    Chowdhury I, Tharakan B, Bhat GK (2008) Caspases—an update. Comp Biochem Physiol B 151:10–27PubMedCrossRefGoogle Scholar
  14. 14.
    Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788PubMedCrossRefGoogle Scholar
  15. 15.
    Wong WW, Puthalakath H (2008) Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life 60:339–390CrossRefGoogle Scholar
  16. 16.
    Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21:501–515PubMedCrossRefGoogle Scholar
  17. 17.
    Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430:199–205PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132PubMedCrossRefGoogle Scholar
  19. 19.
    Simonsen A, Tooze SA (2009) Coordination of membrane events during autophagy by multiple class III PI3–kinase complexes. J Cell Biol 186:773–782PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Funderbur SF, Wang QJ, Yue Z (2010) The Beclin1–VPS34 complex—at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362CrossRefGoogle Scholar
  21. 21.
    Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. EMBO Rep 9:859–864PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33:109–122PubMedCrossRefGoogle Scholar
  25. 25.
    Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–1099PubMedCrossRefGoogle Scholar
  26. 26.
    Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619PubMedCrossRefGoogle Scholar
  27. 27.
    Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13:1378–1386PubMedCrossRefGoogle Scholar
  28. 28.
    Szegezdi E, Macdonald DC, Ni Chonghaile T, Gupta S, Samali A (2009) Bcl-2 family on guard at the ER. Am J Physiol Cell Physiol 296:C941–C953PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou F, Yang Y, Xing D (2011) Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 278:403–413PubMedCrossRefGoogle Scholar
  30. 30.
    Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939PubMedCrossRefGoogle Scholar
  31. 31.
    Feng W, Huang S, Wu H, Zhang M (2007) Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol 372:223–235PubMedCrossRefGoogle Scholar
  32. 32.
    Oberstein A, Jeffrey PD, Shi Y (2007) Crystal structure of the Bcl-xL-Beclin 1 peptide complex: beclin 1 is a novel BH3-only protein. J Biol Chem 282:13123–13132PubMedCrossRefGoogle Scholar
  33. 33.
    Marquez RT, Xu L (2012) Bcl-2:beclin-1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2:214–221PubMedCentralPubMedGoogle Scholar
  34. 34.
    Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4:600–606PubMedCentralPubMedGoogle Scholar
  35. 35.
    Chang NC, Nguyen M, Germain M, Shore GC (2010) Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J 29:606–618PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Strappazzon F, Vietri-Rudan M, Campello S, Nazio F, Florenzano F, Fimia GM et al (2011) Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J 30:1195–1208PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4:949–951PubMedCentralPubMedGoogle Scholar
  38. 38.
    Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M et al (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-xL and induction of autophagy. EMBO Rep 10:285–292PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Bovellan M, Fritzsche M, Stevens C, Charras G (2010) Death associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death. FEBS J 277:58–65PubMedCrossRefGoogle Scholar
  40. 40.
    Kang R, Livesey KM, Zeh HJ, Loze MT, Tang D (2010) HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6:1209–1211PubMedCrossRefGoogle Scholar
  41. 41.
    Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P et al (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE et al (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P et al (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26:2527–2539PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Luo S, Rubinsztein DC (2010) Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17:268–277PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Schwarten M, Mohrlüder J, Ma P, Stoldt M, Thielmann Y, Stangler T et al (2009) Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5:690–698PubMedCrossRefGoogle Scholar
  46. 46.
    Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J et al (2009) Hypoxia induced autophagy is mediated through hypoxia inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16:939–946PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Elgendy M, Sheridan C, Brumatti G, Martin SJ (2011) Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 42:23–35PubMedCrossRefGoogle Scholar
  49. 49.
    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040PubMedCrossRefGoogle Scholar
  50. 50.
    Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134PubMedCrossRefGoogle Scholar
  51. 51.
    Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’amelio M et al (2008) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10:676–687PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Yee KS, Wilkinson S, James J, Ryan KM, Vousden KH (2009) PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 16:1135–1145PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PP, Sadiq O et al (2012) Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol Cell 47:359–370PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Huang X, Wu Z, Mei Y, Wu M (2013) XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. EMBO J 32:2204–2216PubMedCrossRefGoogle Scholar
  55. 55.
    Norman JM, Cohen GM, Bampton ET (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6:1042–1056PubMedCrossRefGoogle Scholar
  56. 56.
    Castedo M, Ferri KF, Kroemer G (2002) Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ 9:99–100PubMedCrossRefGoogle Scholar
  57. 57.
    Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jenö P et al (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2:e1217PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Cai Y, Xia Q, Su Q, Luo R, Sun Y, Shi Y et al (2013) mTOR inhibitor RAD001 (everolimus) induces apoptotic, not autophagic cell death, in human nasopharyngeal carcinoma cells. Int J Mol Med 31:904–912PubMedGoogle Scholar
  59. 59.
    Li H, Jin X, Zhang Z, Xing Y, Kong X (2013) Inhibition of autophagy enhances apoptosis induced by the PI3 K/AKT/mTor inhibitor NVP-BEZ235 in renal cell carcinoma cells. Cell Biochem Funct 31:427–433PubMedCrossRefGoogle Scholar
  60. 60.
    Cho DH, Jo YK, Hwang JJ, Lee YM, Roh SA, Kim JC (2009) Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 274:95–100PubMedCrossRefGoogle Scholar
  61. 61.
    Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X et al (2010) Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 1:468–477PubMedCrossRefGoogle Scholar
  62. 62.
    Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I et al (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:e18PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S et al (2012) Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19:1495–1504PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Corazzari M, Fimia GM, Piacentini M (2012) Dismantling the autophagic arsenal when it is time to die: concerted AMBRA1 degradation by caspases and calpains. Autophagy 8:1255–1257PubMedCrossRefGoogle Scholar
  65. 65.
    Yin X, Cao L, Kang R, Yang M, Wang Z, Peng Y et al (2011) UV irradiation resistance-associated gene suppresses apoptosis by interference with Bax activation. EMBO Rep 12:727–734PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132PubMedCrossRefGoogle Scholar
  67. 67.
    Bhutia SK, Dash R, Das SK, Azab B, Su ZZ, Lee SG et al (2010) Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24. Cancer Res 70:3667–3676PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Betin VM, Lane JD (2009) Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 122(Pt 14):2554–2566PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Betin VM, MacVicar TD, Parsons SF, Anstee DJ, Lane JD (2012) A cryptic mitochondrial targeting motif in Atg4D links caspase cleavage with mitochondrial import and oxidative stress. Autophagy 8:664–676PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A (2011) The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell 44:698–709PubMedCrossRefGoogle Scholar
  71. 71.
    Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C et al (2010) ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 42:590–600CrossRefGoogle Scholar
  72. 72.
    Bell BD, Leverrier S, Weist BM, Newton RH, Arechiga AF, Luhrs KA et al (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci USA 105:16677–16682PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN et al (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729PubMedCrossRefGoogle Scholar
  74. 74.
    Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR et al (2009) FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11:1355–1362PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Oral O, Oz-Arslan D, Itah Z, Naghavi A, Deveci R, Karacali S et al (2012) Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 17:810–820PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang YB, Zhao W, Zeng RX (2013) Autophagic degradation of caspase-8 protects U87MG cells against H2O2-induced oxidative stress. Asian Pac J Cancer Prev 14:4095–4099PubMedCrossRefGoogle Scholar
  77. 77.
    Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735PubMedCrossRefGoogle Scholar
  78. 78.
    Huang S, Okamoto K, Yu C, Sinicrope FA (2013) p62/sequestosome-1 upregulation promotes ABT-263-induced caspase-8 aggregation/activation on the autophagosome. J Biol Chem 288(47):33654–33666PubMedCrossRefGoogle Scholar
  79. 79.
    Liu SY, Chen CL, Yang TT, Huang WC, Hsieh CY, Shen WJ et al (2012) Albumin prevents reactive oxygen species-induced mitochondrial damage, autophagy, and apoptosis during serum starvation. Apoptosis 17:1156–1169PubMedCrossRefGoogle Scholar
  80. 80.
    Hou W, Han J, Lu C, Goldstein LA, Rabinowich H (2010) Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6:891–900PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J et al (2012) Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 287:12455–12468PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Altman BJ, Rathmell JC (2012) Metabolic stress in autophagy and cell death pathways. Cold Spring Harb Perspect Biol 4:a008763PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Shi Z, Li CY, Zhao S, Yu Y, An N, Liu YX et al (2013) A systems biology analysis of autophagy in cancer therapy Cancer Lett 337:149–160Google Scholar
  84. 84.
    Mukhopadhyay S, Panda PK, Behera B, Das CK, Hassan MK, Das DN et al (2013) In vitro and in vivo antitumor effects of Peanut agglutinin through induction of apoptotic and autophagic cell death. Food Chem Toxicol 64C:369–377Google Scholar
  85. 85.
    Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP et al (2010) mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 21:381–391PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM, Rabinowich H (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283:19665–19677PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Sinha N, Mukhopadhyay S, Das DN, Panda PK, Bhutia SK (2013) Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. Oral Oncol 49:854–862PubMedCrossRefGoogle Scholar
  88. 88.
    Thomas S, Thurn KT, Bicaku E, Marchion DC, Münster PN (2011) Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy. Breast Cancer Res Treat 130:437–447PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15:5308–5316PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Moretti L, Yang ES, Kim KW, Lu B (2007) Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist Updates 10:135–143CrossRefGoogle Scholar
  91. 91.
    Corcelle EA, Puustinen P, Jäättelä M (2009) Apoptosis and autophagy: targeting autophagy signalling in cancer cells—‘Trick or treats’? FEBS J 276:6084–6096PubMedCrossRefGoogle Scholar
  92. 92.
    Ostenfeld MS, Høyer-Hansen M, Bastholm L, Fehrenbacher N, Olsen OD, Groth-Pedersen L et al (2008) Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 4:487–499PubMedGoogle Scholar
  93. 93.
    Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X et al (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282:4702–4710PubMedCrossRefGoogle Scholar
  94. 94.
    Høyer-Hansen M, Jäättelä M (2008) Autophagy: an emerging target for cancer therapy. Autophagy 4:574–580PubMedGoogle Scholar
  95. 95.
    Bustamante-Marín X, Quiroga C, Lavandero S, Reyes JG, Moreno RD (2012) Apoptosis, necrosis and autophagy are influenced by metabolic energy sources in cultured rat spermatocytes. Apoptosis 17:539–550PubMedCrossRefGoogle Scholar
  96. 96.
    Nishida K, Yamaguchi O, Otsu K (2008) Crosstalk between autophagy and apoptosis in heart disease. Circ Res 103:343–351PubMedCrossRefGoogle Scholar
  97. 97.
    Hsieh YC, Athar M, Chaudry IH (2009) When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol Med 15:129–138PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43:68–78PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M et al (2006) Autophagy is involved in T cell death after binding of HIV envelope proteins to CXCR4. J Clin Invest 116:2161–2172PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Xue L, Fletcher G, Tolkovsky A (1999) Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 14:180–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Subhadip Mukhopadhyay
    • 1
  • Prashanta Kumar Panda
    • 1
  • Niharika Sinha
    • 1
  • Durgesh Nandini Das
    • 1
  • Sujit Kumar Bhutia
    • 1
    Email author
  1. 1.Department of Life ScienceNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations