, Volume 19, Issue 3, pp 436–450 | Cite as

Different routes lead to apoptosis in unfertilized sea urchin eggs

  • Laetitia Philippe
  • Lucie Tosca
  • Wen Ling Zhang
  • Marion Piquemal
  • Brigitte CiapaEmail author
Original Paper


Results obtained in various species, from mammals to invertebrates, show that arrest in the cell cycle of mature oocytes is due to a high ERK activity. Apoptosis is stimulated in these oocytes if fertilization does not occur. Our previous data suggest that apoptosis of unfertilized sea urchin eggs is the consequence of an aberrant short attempt of development that occurs if ERK is inactivated. They contradict those obtained in starfish, another echinoderm, where inactivation of ERK delays apoptosis of aging mature oocytes that are nevertheless arrested at G1 of the cell cycle as in the sea urchin. This suggests that the cell death pathway that can be activated in unfertilized eggs is not the same in sea urchin and in starfish. In the present study, we find that protein synthesis is necessary for the survival of unfertilized sea urchin eggs, contrary to starfish. We also compare the effects induced by Emetine, an inhibitor of protein synthesis, with those triggered by Staurosporine, a non specific inhibitor of protein kinase that is widely used to induce apoptosis in many types of cells. Our results indicate that the unfertilized sea urchin egg contain different mechanisms capable of leading to apoptosis and that rely or not on changes in ERK activity, acidity of intracellular organelles or intracellular Ca and pH. We discuss the validity of some methods to investigate cell death such as measurements of caspase activation with the fluorescent caspase indicator FITC-VAD-fmk or acidification of intracellular organelles, methods that may lead to erroneous conclusions at least in the sea urchin model.


Apoptosis Egg Sea urchin MAP kinase Calcium Staurosporine 



We thank R. Dumollard and A. Mc Dougall for their help in Ca measurements and C. Billam for correcting our manuscript.

Supplementary material

Supplementary material 1 (WMV 1097 kb)

Supplementary material 2 (WMV 1108 kb)

10495_2013_950_MOESM3_ESM.docx (10 kb)
Supplementary material 3 (DOCX 10 kb)


  1. 1.
    Fissore RA, Kurokawa M, Knott J, Zhang M, Smyth J (2002) Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction 124:745–754. doi: 10.1530/rep.0.1240745 PubMedCrossRefGoogle Scholar
  2. 2.
    Greenwood J, Gautier J (2005) From oogenesis through gastrulation: developmental regulation of apoptosis. Semin Cell Dev Biol 16:215–224. doi: 10.1016/j.semcdb.2004.12.002 PubMedCrossRefGoogle Scholar
  3. 3.
    Taylor RC, Cullen Sean P, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241. doi: 10.1038/nrm2312 PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang WL, Huitorel P, Genevière AM, Chiri S, Ciapa B (2006) Inactivation of MAPK activity triggers progression into mitotic cycle after meiosis via a Ca-dependant pathway. J Cell Sci 119:3491–3501. doi: 10.1242/jcs.03082 PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang WL, Huitorel P, Glass R, Fernandez-Serrat M, Arnone MI, Chiri S, Picard A, Ciapa B (2005) A MAPK pathway is involved in the control of mitosis after fertilization of the sea urchin egg. Dev Biol 282:192–206. doi: 10.1016/j.ydbio.2005.03.008 PubMedCrossRefGoogle Scholar
  6. 6.
    Hara M, Mori M, Wada T, Tachibana K, Kishimoto T (2009) Start of the embryonic cell cycle is dually locked in unfertilized starfish eggs. Development 136:1687–1896. doi: 10.1242/dev.035261 PubMedCrossRefGoogle Scholar
  7. 7.
    Amiel A, Leclère L, Robert L, Chevalier S, Houliston E (2009) Conserved functions for Mos in eumetazoan oocyte maturation revealed by studies in a cnidarian. Curr Biol 19:305–311. doi: 10.1016/j.cub.2008.12.054 PubMedCrossRefGoogle Scholar
  8. 8.
    Dumollard R, Levasseur M, Hebras C, Huitorel P, Carroll M, Chambon JP, McDougall A (2011) Mos limits the number of meiotic divisions in urochordate eggs. Development 138:885–895. doi: 10.1242/dev.057133 PubMedCrossRefGoogle Scholar
  9. 9.
    Yamamoto DS, Tachibana K, Sumitani M, Lee JM, Hatakeyama M (2008) Involvement of Mos-MEK-MAPK pathway in cytostatic factor (CSF) arrest in eggs of the parthenogenetic insect, Athalia rosae. Mech Dev 125:996–1008. doi: 10.1016/j.mod.2008.08.004 PubMedCrossRefGoogle Scholar
  10. 10.
    Wu JQ, Kornbluth S (2008) Across the meiotic divide: CSF activity in the post-Emi2/XErp1era. J Cell Sci 121:3509–3514. doi: 10.1242/jcs.036855 PubMedCrossRefGoogle Scholar
  11. 11.
    Shaul YD, Seger R (2007) The MEK/MAPK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226. doi: 10.1016/j.bbamcr.2006.10.005 PubMedCrossRefGoogle Scholar
  12. 12.
    Sasaki K, Chiba K (2001) Fertilization blocks apoptosis of starfish eggs by inactivation of the MAP kinase pathway. Dev Biol 237(1):18–28. doi: 10.1006/dbio.2001.0337 PubMedCrossRefGoogle Scholar
  13. 13.
    Sasaki K, Chiba K (2004) Induction of apoptosis in starfish eggs requires spontaneous inactivation of MAPK (extracellular signal-regulated kinase) followed by activation of p38MAPK. Mol Biol Cell 15:1387–1396. doi: 10.1091/mbc.E03-06-0367 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Sadler KC, Yüce O, Hamaratoglu F, Vergé V, Peaucellier G, Sadler PA et al (2004) MAP kinases regulate unfertilized egg apoptosis and fertilization suppresses death via Ca2+ signaling. Mol Reprod Dev 67:366–383. doi: 10.1002/mrd.20023 PubMedCrossRefGoogle Scholar
  15. 15.
    Lera S, Pellegrini D (2006) Evaluation of the fertilization capability of Paracentrotus lividus sea urchin storaged gametes by the exposure to different aqueous matrices. Environ Monit Assess 119:1–13. doi: 10.1007/s10661-005-9000-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Houel-Renault L, Philippe L, Piquemal M, Ciapa B (2013) Autophagy is used as a survival program in unfertilized sea urchin eggs that are destined to die by apoptosis after inactivation of MAPK1/3 (ERK2/1). Autophagy. 9(10):1527–1539Google Scholar
  17. 17.
    Voronina E, Wessel GM (2001) Apoptosis in sea urchin oocytes, eggs, and early embryos. Mol Reprod Dev 60:553–561. doi: 10.1002/mrd.1120 PubMedCrossRefGoogle Scholar
  18. 18.
    Möller M, Herzer K, Wenger T, Herr I, Wink M (2007) The alkaloid Emetine as a promising agent for the induction and enhancement of drug-induced apoptosis in leukemia cells. Oncol Rep 18:737–744PubMedGoogle Scholar
  19. 19.
    Hori T, Kondo T, Tabuchi Y, Takasaki I et al (2008) Molecular mechanism of apoptosis and gene expressions in human lymphoma U937 cells treated with anisomycin. Chem Biol Interact 172:125–140. doi: 10.1016/j.cbi.2007.12.003 PubMedCrossRefGoogle Scholar
  20. 20.
    Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418. doi: 10.1038/onc.2008.308 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Scharenberg AM, Humphries LA, Rawlings DJ (2007) Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 10:778–789. doi: 10.1038/nri21 CrossRefGoogle Scholar
  22. 22.
    Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8:361–375. doi: 10.1038/nrc2374 PubMedCrossRefGoogle Scholar
  23. 23.
    Ciapa B, Philippe L (2013) Intracellular and extracellular pH and Ca are bound to control mitosis in the early sea urchin embryo via ERK and MPF activities. PLoS One 8(6):e66113. doi: 10.1371/journal.pone.0066113 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61. doi: 10.1038/nrm2820 PubMedCrossRefGoogle Scholar
  25. 25.
    Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308. doi: 10.1002/jcp.22400 PubMedCrossRefGoogle Scholar
  26. 26.
    Chen Y, Klionsky DJ (2011) The regulation of autophagy: unanswered questions. J Cell Sci 124:161–170. doi: 10.1242/jcs.064576 PubMedCrossRefGoogle Scholar
  27. 27.
    Chiri S, De Nadai C, Ciapa B (1998) Evidence for MAP kinase activation during mitotic division. J Cell Sci 111:2519–2527. doi: 9701551 PubMedGoogle Scholar
  28. 28.
    Prodon F, Chenevert J, Hébras C, Dumollard R, Faure E, Gonzalez-Garcia J, Nishida H, Sardet C, McDougall A (2010) Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 137:2011–2021. doi: 10.1242/dev.047845 PubMedCrossRefGoogle Scholar
  29. 29.
    Pesando D, Dominice C, Dufour MN, Guillon G, Jouin P, Ciapa B (1995) Effect of nordidemnin on the cell cycle of sea urchin embryos. Role in synthesis and phosphorylation of proteins and in polyphosphoinositide turnover in mitosis progression. Exp Cell Res 220(1):18–28. doi: 10.1006/excr.1287 PubMedCrossRefGoogle Scholar
  30. 30.
    Wagenaar EB, Mazia D (1978) In: Dirksen ER, Prescott DM, Fos CF (eds) Cell reproduction, vol 12. Academic Press, New York, pp 539–545Google Scholar
  31. 31.
    Meijer L, Pondaven P (1988) Cyclic activation of histone H1 kinase during sea urchin egg mitotic divisions. Exp Cell Res 174:116–129. doi: 10.1016/0014-4827(88)90147-4 PubMedCrossRefGoogle Scholar
  32. 32.
    Tyler A, Tyler BS, Piatigorsky J (1968) Protein synthesis by unfertilized eggs of sea urchins. Biol Bull 134(1):209–219. doi: 10.2307/1539978 PubMedCrossRefGoogle Scholar
  33. 33.
    Tunquist BJ, Maller JL (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 17:683–710. doi: 10.1101/gad.1071303 PubMedCrossRefGoogle Scholar
  34. 34.
    Ohsumi K, Koyanagi A, Yamamoto TM, Gotoh T, Kishimoto T (2004) Emi1-mediated M-phase arrest in Xenopus eggs is distinct from cytostatic factor arrest. Proc Natl Acad Sci USA 101:12531–12536. doi: 10.1073/pnas.0405300101 PubMedCrossRefGoogle Scholar
  35. 35.
    Vaculova A, Zhivotovsky B (2008) Caspases: determination of their activities in apoptotic cells. Methods Enzymol 442:157–181. doi: 10.1016/S0076-6879(08)01408-0 PubMedCrossRefGoogle Scholar
  36. 36.
    Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49. doi: 10.1016/S0070-2153(06)77002-8 PubMedCrossRefGoogle Scholar
  37. 37.
    Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961. doi: 10.1038/sj.cdd.4401466 PubMedCrossRefGoogle Scholar
  38. 38.
    Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5(11):886–897. doi: 10.1038/nrc1738 PubMedCrossRefGoogle Scholar
  39. 39.
    Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 452:143–164. doi: 10.1016/S0076-6879(08)03610-0 PubMedCrossRefGoogle Scholar
  40. 40.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544. doi: 10.4161/auto.19496 PubMedCrossRefGoogle Scholar
  41. 41.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11. doi: 10.1038/cdd.2008.150 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Charras GT (2008) A short history of blebbing. J Microsc 231:466–478. doi: 10.1111/j.1365-2818.2008.02059.x PubMedCrossRefGoogle Scholar
  43. 43.
    Robertson AJ, Croce J, Carbonneau S, Voronina E, Miranda E, McClay DR, Coffman JA (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300:321–334. doi: 10.1016/j.ydbio.2006.08.053 PubMedCrossRefGoogle Scholar
  44. 44.
    Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232. doi: 10.1042/BJ20041142 PubMedCrossRefGoogle Scholar
  45. 45.
    Chiarelli R, Agnello M, Roccheri MC (2011) Sea urchin embryos as a model system for studying autophagy induced by cadmium stress. Autophagy 7:1028–1034. doi: 10.4161/auto.7.9.16450 PubMedCrossRefGoogle Scholar
  46. 46.
    Morgan AJ (2011) Sea urchin eggs in the acid reign. Cell Calcium 50:147–156. doi: 10.1016/j.ceca.2010.12.007 PubMedCrossRefGoogle Scholar
  47. 47.
    Hogan B, Gross PR (1971) The effect of protein synthesis inhibition on the entry of messenger RNA into the cytoplasm of sea urchin embryos. J Cell Biol 49:692–701. doi: 10.1083/jcb.49.3.692 PubMedCrossRefGoogle Scholar
  48. 48.
    Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327. doi: 10.1038/nrm1618 PubMedCrossRefGoogle Scholar
  49. 49.
    Adams KW, Cooper GM (2007) Rapid turnover of mcl-1 couples translation to cell survival and apoptosis. J Biol Chem 282:6192–6200. doi: 10.1074/jbc.M610643200 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Sardet C, Prodon F, Dumollard R, Chang P, Chenevert J (2002) Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 241:1–23. doi: 10.1006/dbio 2001.0474PubMedCrossRefGoogle Scholar
  51. 51.
    Schroeder TE (1980) The jelly canal marker of polarity for sea urchin oocytes, eggs, and embryos. Exp Cell Res 128:490–494. doi: 10.1016/0014-4827(80)90088-9 PubMedCrossRefGoogle Scholar
  52. 52.
    Giacomello M, Drago I, Pizzo P, Pozzan T (2007) Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ 14:1267–1274. doi: 10.1038/sj.cdd.4402147 PubMedCrossRefGoogle Scholar
  53. 53.
    Fujita H, Ishizaki Y, Yanagisawa A, Morita I, Murota SI, Ishikawa K (1999) Possible involvement of a chloride-bicarbonate exchanger in apoptosis of endothelial cells and cardiomyocytes. Cell Biol Int 23:241–249. doi: 10.1006/cbir.1999.0342 PubMedCrossRefGoogle Scholar
  54. 54.
    Tafani M, Cohn JA, Karpinich NO, Rothman RJ, Russo MA, Farber JL (2002) Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha. J Biol Chem 277:49569–49576. doi: 10.1074/jbc.M208915200 PubMedCrossRefGoogle Scholar
  55. 55.
    Krumschnabel G, Maehr T, Nawaz M, Schwarzbaum P, Manzl C (2007) Staurosporine-induced cell death in salmonid cells: the role of apoptotic volume decrease, ion fluxes and MAP kinase signaling. Apoptosis 12:1755–1768. doi: 10.1007/s10495-007-0103-7 PubMedCrossRefGoogle Scholar
  56. 56.
    Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/map kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60:261–310. doi: 10.1124/pr.107.00106 PubMedCrossRefGoogle Scholar
  57. 57.
    Morita Y, Tilly JL (1999) Oocyte apoptosis: like sand through an hourglass. Dev Biol 213(1):1–17. doi: 10.1006/dbio.1999.9344 PubMedCrossRefGoogle Scholar
  58. 58.
    Roccheri MC, Tipa C, Bonaventura R, Matranga V (2002) Physiological and induced apoptosis in sea urchin larvae undergoing metamorphosis. Int J Dev Biol 46(6):801–806PubMedGoogle Scholar
  59. 59.
    Vega Thurber R, Epel D (2007) Apoptosis in early development of the sea urchin, Strongylocentrotus purpuratus. Dev Biol 303(1):336–346. doi: 10.1016/j.ydbio.2006.11.018 PubMedCrossRefGoogle Scholar
  60. 60.
    Agnello M, Roccheri MC (2010) Apoptosis: focus on sea urchin development. Apoptosis 15(3):322–330. doi: 10.1007/s10495-009-0420-0 PubMedCrossRefGoogle Scholar

Copyright information

© European Union 2013

Authors and Affiliations

  • Laetitia Philippe
    • 1
  • Lucie Tosca
    • 2
  • Wen Ling Zhang
    • 3
  • Marion Piquemal
    • 1
  • Brigitte Ciapa
    • 1
    Email author
  1. 1.Centre de Neurosciences Paris-Sud (CNPS)Orsay CedexFrance
  2. 2.INSERM U935/Université Paris Sud/AP-HP, Histologie-Embryologie-CytogénétiqueHôpital Antoine BéclèreClamartFrance
  3. 3.Institute for Reproductive MedicineTorontoCanada

Personalised recommendations